

Validation and Compliance Testing Strategies for HyperTransport 3.0 Design

Mario Cavalli General Manager

Guest Member Company

Agilent Technologies

Perry Keller Program Manager Standards and Applications

HT3 Validation and Compliance Test Strategies

Perry Keller

Program Manager Standards and Applications

Agilent Technologies
Design Verification Systems Division

Outline

- Impact of HT3 on validation and compliance test
- Preparation for and execution of key HT3 test areas
 - Transmitter
 - Receiver
 - Channel
 - Protocol
- Summary and information pointers

HT3 Verification and Compliance Test Areas

- Transmitter
- Receiver
- HT3 Channel
- Functional and Protocol

"Conventional" Testing at Microwave Speeds

- Small variances in probe loading can produce significant changes in measured results
 - Even sub-pf loads are important at 7+Ghz HT3 harmonics
- Measurements become less accurate as distance from Tx/Rx increases.
 - Reflections due to Tx/Rx return loss and channel impedance variations sum in complex ways
 - Even the pad to package pin differences are significant
 - Existence of a standard connector interface cannot be assumed

"Conventional" Testing at Microwave Speeds

- Compliant drivers and receivers are specified into 50 ohm load, so voltages measured in actual channels that deviate from 50 ohms cannot be used to verify compliance
- Traditional definition of channel in terms of loss and impedance rules out many valid channels and limits design options
- Result: Traditional direct measurements of Tx, Rx and channel characteristics in-system will not assure correct operation – a different strategy must be used.

HT3 Compliance Test Philosophy

- Reference Plane methodology defines compliance test points
- Tx, Rx, and channel independently tested for compliance
- Microwave quality test fixtures customized for each Tx and Rx component are used for accuracy and repeatability
- "De-embedding" of probing and fixturing required
- Simulation of measured channel is used to assure worst case Tx signal generates acceptable Rx eye

Tx / Rx/ Channel Compliance Measured Separately

Transmitter Test Preparation

De-emphasis Induced Jitter

De-emphasized bit reaches

threshold sooner than full swing bit

Tx eye as measured on low loss channel

IF fullswing:

scale = deemp; offset = 0.0

ELSEIF previousBit == 1:

$$scale = \frac{2 \cdot deemp}{1 + deemp}; \quad offset = \frac{1 - scale}{4}$$

ELSE:

$$scale = \frac{2 \cdot deemp}{1 + deemp}; \quad offset = -\frac{1 - scale}{4}$$

Each bit of waveform scaled based on de-emphasis level

De-emphasis precisely normalized to allow compliance measurement

Receiver Test Setup

- BERT generates calibrated output at Rx reference plane (voltage and jitter)
- ISI Generator compensates for De-emphasis
- HT3 Receiver configured in loopback mode to allow BERT to detect Rx errors

- BERT and jitter sources adjusted to produce compliance eye at reference plane
- ISI generator may be actual one driving HT3 Rx, or a calibrated copy
- Scope detects when compliance eye is created, based on de-embedding of scope probe connection to ISI generator

Receiver Eye Measurement

Channel Compliance Methodology

- Direct specification of frequency or time domain characteristics of a microwave channel built from low cost materials (FR4) can be <u>very</u> complicated
 - What kind of mask could be used to tell if these channels are compliant?

- What really counts is whether the transmitted eye, when traveling over a real channel, produces a signal the receiver can recognize
- HT3 takes a pragmatic approach that allows a channel to be physically measured and then tested in simulation for compliance

HT3 Channel Compliance

Measure (or compute from 3D field solver) the channel step response.
 Include crosstalk effects:

- This can be done with a 12 port VNA or TDR/TDT measurements
- Describe the statistical behavior of a worst case HT3 transmitter, including de-emphasis and pulse width jitter
- Simulate the channel's response to this stimulus using a statistical eye diagram simulation. Include clock crosstalk by modeling it as a data channel transmitting a 1010 pattern. (AMD's J-eye tool is described in the HT3 spec, although similar tools such as StatEye also exist.)
- Compare the statistical eye at 1E-12 BER to HT3 compliance mask

HT3 Statistical Eye Measurement

Functional Validation

- Validation of HT3 functionality and compliance utilizes standard protocol testing strategies
 - Software stress tests
 - System level white box and black box testing
 - HW protocol test state machines
 - Protocol analysis to allow visibility of stimulus and response
- Access to the HT3 channel for protocol analysis can help

Summary

- HyperTransport 3's microwave signaling speeds demand new approaches to design and test
 - High performance test fixtures
 - De-embedding of probing and fixture losses
 - Statistical approaches to channel validation and compliance
- Existing tools *can* be used to support design validation and implement compliance tests
- Completing your validation and compliance testing will be expedited significantly if the right preparation is done
- For more information:
 - www.hypertransport.org
 - Your local Agilent application and field engineer

Validation and Compliance Testing Strategies for HyperTransport 3.0 Design

Questions and Answers

For information about HyperTransport technology visit the "Technology" page on www.hypertransport.org or call 925-968-0220

For information about Agilent products
www.agilent.com
or call your local Agilent application and field engineer

All product trademarks included in this presentation are the property of their respective owners