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I - Introduction 
 

HyperTransport devices communicate by exchanging packets. These packets fall into one 
of two classes: control packets and data packets. Control packets carry requests and their 
corresponding responses, if required. When a request or a response packet needs some 
data to be transferred, an additional data packet following the control packet is sent. 
 
Request packets include read and write requests as well as other commands such as 
flushes or atomic read-modify-write operations. An example request packet is shown in 
Figure 1. Depending on the exact contents of the command field (Cmd), this request may 
be a read, a write, a read-modify-write, or a broadcast. As can be seen in the figure below, 
this request packet contains an address, and therefore, it is 8 bytes long. 

 
         

 
         Figure 1 – Request packet format with address 
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In the HyperTransport protocol, not all request packets are 8 bytes long. Some request 
packets, such as fence or flush packets, are 4 bytes long. On the other hand, packets may 
be extended by using an address extension, a source identifier extension, or both. Packet 
extensions are always 4 bytes long. Therefore, the length of request packets exchanged by 
HyperTransport devices may be 4, 8, 12, or 16 bytes, depending on the type of request and 
the number of extensions added to the packet. 
 
Response packets are always 4 bytes long. Response packets include read responses and 
target done packets. Figure 2 shows an example of a read response packet. 

          

 
 
         Figure 2 – Read response packet 

 
As mentioned above, a data packet may accompany a control packet when some data 
must be transferred. This is the case for the read response packet shown in Figure 2. As 
shown in that figure, the packet does not carry any data, despite the fact that it is a read 
response. The expected read data is contained in a second packet following the one shown 
in Figure 2. The second packet is a data packet. Data packets follow write requests and 
read responses. They range in length from 4 to 64 bytes and in multiples of 4 bytes. Figure 
3 shows an example of an 8 byte data packet. 
 

 
         
          Figure 3 –8 byte data packet 
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Table 1 summarizes the types of packets and their corresponding lengths. See Sections 
3.2, 4.4, and 4.5 of the HyperTransport I/O Link Specification Revision 3.0 for a complete 
description of HyperTransport packets. 

 
Packet Type  Length 
Control – Request 4, 8, 12, or 16 bytes 
Control – Response 4 bytes 
Data  From 4 to 64 bytes in 4 byte steps 

 
         Table 1 – Packet types and lengths 
 
 
II - The HyperTransport Flow Control Protocol 
 

HyperTransport devices store incoming packets in buffers while deciding whether to 
forward or accept them. There are six basic types of buffers: 

• Nonposted Requests 
• Posted Requests 
• Responses 
• Nonposted Request Data 
• Posted Request Data 
• Response Data 

 
According to Section 4.8 of the HyperTransport I/O Link Specification Revision 3.0, request 
and response buffers contain enough storage space to store the largest control packet of 
that type. Also, all data buffers can hold 64 bytes. Additionally, and in order to improve 
performance, a HyperTransport device may have several buffers of each type. The exact 
number of buffers depends on the implementation; it is even possible to design a device 
with fewer buffers than the minimum required to fully utilize link bandwidth. 
 
The HyperTransport protocol states that a transmitter should not issue a packet that cannot 
be stored by the receiver. Thus, the transmitter must know how many buffers of each type 
the receiver has available. To achieve this, a coupon-based1 scheme is used between 
transmitters and receivers. With such a scheme, the transmitter has a counter for each type 
of buffer implemented at the receiver. When the transmitter sends either a control or data 
packet, it decrements the associated counter. When one of the counters reaches zero, the 
transmitter stops sending packets of that type. On the other hand, when the receiver frees 
a buffer, it sends a no-operation (NOP) packet to the transmitter in order to inform it about 
space availability. Figure 4 shows a NOP packet. In it, the fields used for returning coupons 

                                                     
1 Coupon-based schemes are traditionally known as credit-based schemes. 
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for each of the buffer types are 2 bits wide, thus allowing up to three buffers to be declared 
free. If a receiver frees more than three buffers, then it will send several NOP packets. 

 

 
 
         Figure 4 – NOP packet 
 

In order to initialize counters properly, upon link reset, the transmitter clears its counters 
and the receiver sends NOP packets to indicate how many buffers of each type it has 
available. As fields in the NOP packet allow declaring only up to three available buffers, 
receivers having more buffers will send additional NOP packets. Because transmitters and 
receivers might be independently designed, if a transmitter receives more coupons than it 
can keep track of, the corresponding counter will saturate, i.e., it will never wrap. In this 
case, both the transmitter and the receiver will use the maximum number of coupons that 
they can simultaneously support. Additionally, transmitter counters must allow the tracking 
of at least 15 buffers, thus making the minimum counter width equal to 4 bits. Refer to 
Section 4.8 of the HyperTransport I/O Link Specification Revision 3.0 for additional 
information on the HyperTransport flow control protocol. 

 
 
III - A Simple Implementation of HyperTransport Flow Control 
 

The HyperTransport flow control protocol may be implemented just by using a counter at 
the transmitter for each of the buffer types and a NOP packet generator at the receiver, as 
presented in the previous section. From the memory usage point of view, such an 
implementation is very simple and efficient in the case of response packets. However, it is 
not in the case of request and data packets, in which memory usage might not be efficient. 
In the former case (when applied to response packets), the implementation is efficient 
because all response packets have the same length, i.e., the buffer size allocation matches 
the coupon's size definition; meaning that a coupon reports a free 4 byte buffer and is 
signalling that there is room for one additional response packet. In the case of request 
packets, buffer size and coupons do not have the same meaning, for the reason that not all 
request packets have the same length. Therefore, the buffer size must be enlarged to fit the 
largest request packet size, i.e., 16 bytes, as described in Section 4.8.1 of the 
HyperTransport I/O Link Specification Revision 3.0. However, request packets range from 4 
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to 16 bytes. In this context, a coupon signalling that there is one free 16 byte buffer does 
not necessarily imply that there is room for only one additional request packet, because 
incoming packets might be smaller. For example, if incoming request packets are 8 bytes 
long, there is actually room for two request packets. This mismatch leads to decreased 
memory usage efficiency, since we could store more incoming packets than the coupon 
count. Table 2 shows an example of the coupon count and memory occupancy progression 
when several request packets are received. The last column of Table 2 shows the 
improved coupon count that results from taking into account the size of incoming packets, 
i.e., numbers computed as free memory space divided by the maximum packet length. 
Table 2 assumes that total memory size is the minimum (15 buffers, each of them being 16 
bytes long). Incoming request packet lengths included in Table 2 represent one of any 
possible combinations of request packet lengths.  
 
As seen in Table 2 and as a result of the standard HyperTransport protocol behavior, each 
time a packet is sent to the link, the transmitter decreases its coupon count, and by taking 
into account the length of incoming packets, memory usage is lower than the one indicated 
by the coupon count. Therefore, as shown in the last column of Table 2, when that count 
reaches zero and forces the transmitter to stop sending more packets, the receiver has 
enough memory space to store six additional full-sized packets. 

 
Received Packet 

Length Coupon Count Free Memory Improved 
Coupon Count 

Initially 15 240 15 
Packet 1: 8 bytes 14 232 14 
Packet 2: 12 bytes 13 220 13 
Packet 3: 8 bytes 12 212 13 
Packet 4: 12 bytes 11 200 12 
Packet 5: 4 bytes 10 196 12 
Packet 6: 16 bytes 9 180 11 
Packet 7: 4 bytes 8 176 11 
Packet 8: 8 bytes 7 168 10 
Packet 9: 12 bytes 6 156 9 
Packet 10: 8 bytes 5 148 9 
Packet 11: 4 bytes 4 144 9 
Packet 12: 16 bytes 3 128 8 
Packet 13: 12 bytes 2 116 7 
Packet 14: 8 bytes 1 108 6 
Packet 15: 8 bytes 0 100 6 

 
Table 2 – Coupon count progression and memory usage while receiving request packets 
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If we look at the coupon count progression while forwarding packets, the same effect is 
observed. Table 3 shows this progression when the 15 packets listed in Table 2 are 
forwarded, thus freeing memory. Table 3 assumes that packets are forwarded in the same 
order as they were received. 

 
Forwarded Packet 

Length Coupon Count Free Memory Improved 
Coupon Count 

Initially 0 100 6 
Packet 1: 8 bytes 1 108 6 
Packet 2: 12 bytes 2 120 7 
Packet 3: 8 bytes 3 128 8 
Packet 4: 12 bytes 4 140 8 
Packet 5: 4 bytes 5 144 9 
Packet 6: 16 bytes 6 160 10 
Packet 7: 4 bytes 7 164 10 
Packet 8: 8 bytes 8 172 10 
Packet 9: 12 bytes 9 184 11 
Packet 10: 8 bytes 10 192 12 
Packet 11: 4 bytes 11 196 12 
Packet 12: 16 bytes 12 212 13 
Packet 13: 12 bytes 13 224 14 
Packet 14: 8 bytes 14 232 14 
Packet 15: 8 bytes 15 240 15 

 
         Table 3 – Coupon count and memory usage progression while forwarding request packets 
 

As mentioned above, in the case of data packets, memory occupancy might not be 
efficient. The reason is the same as for request packets: data packets may have different 
lengths, ranging from 4 to 64 bytes. Thus, when a coupon signals that there is one free 64 
byte buffer available, it does not necessarily imply that there is space for only one 
additional data packet because incoming data packets might be smaller. This is especially 
the case for byte reads that are 4 bytes long, byte writes that are up to 32 bytes long, and 
atomic read-modify-writes that are up to 16 bytes long (see Sections 4.4 and 4.5 of the 
HyperTransport I/O Link Specification Revision 3.0 for additional information). In all such 
cases, each data packet occupies a 64 byte buffer at the receiver end, noticeably wasting 
memory space. 

 
 
IV - An Improved Implementation of HyperTransport Flow Control 

 
By leveraging the ideas presented in the previous section, an improved implementation of 
the HyperTransport flow control protocol can be realized. It is important to note that such 
implementation does not require changing the HyperTransport Link Specification. 
Furthermore, the proposed changes apply only to the receiver, i.e., no modifications to the 
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transmitter are required. In fact, improved receivers can be directly connected to and 
transparently interoperate with legacy transmitters, therefore ensuring complete silicon and 
protocol backward compatibility. 
 
The proposed improved implementation of the HyperTransport flow control protocol 
operates as follows: any time a transmitter sends a packet, it decreases the corresponding 
counter, as normally done. Every time the transmitter receives a NOP packet signalling the 
availability of freed buffers, it increases its counters, also as normally done. Thus, the 
transmitter behavior is not modified. At the receiver end, instead, the improved 
implementation takes into account free memory bytes instead of free packet buffers. To do 
so, two separate counters are needed, as shown in Figure 5. 

 
 

 
 
Figure 5 – Proposed implementation of the improved HyperTransport flow control protocol at the 
receiver end. This circuit must be replicated for each buffer type. 

 
The coupon counter in Figure 5 keeps track of the status seen by the transmitter. Every 
time a new packet is received, count A is decremented by one, so as to precisely reflect the 
coupon count seen by the transmitter.  
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The free-byte counter keeps track of the available space at local memory. Every time a 
packet arrives at the receiver, the free-byte counter is decremented by the packet length. 
The four least significant bits (LSBs) of this counter are discarded in order to divide the 
resulting count by 16, as shown in Figure 5. It must be remembered that 16 bytes is the 
length of the largest request packet, and therefore, being divided by 16, count B represents 
the amount of full-sized packets that can be stored in memory. Note that count B will 
always be greater than or equal to count A. If a sequence of full-sized packets is received, 
then count B will be equal to count A. However, if incoming packets are smaller than 16 
bytes, then count B will eventually be greater than count A.  
 
Now that we can accurately track the availability of space at the receiver end, the next step 
is to update this information at the transmitter end, if required. To do so, count A and count 
B are first compared. If both are the same, the coupon count at the transmitter end is 
correct and therefore the process ends. On the other hand, if they differ, updating is 
required. In this case, updating is accomplished by sending back one or more NOP packets 
containing additional coupons. The exact number of coupons to be sent is computed by 
subtracting count A from count B. This operation is triggered by the comparator output, 
which also triggers the loading of count B into the coupon counter, and additionally, it 
signals the need of and update to the NOP packet generator. The NOP packet generator 
should latch the result of the subtraction because after several gate delays, it will become 
zero, as the loading of the coupon counter with the value in count B will force the 
comparator to reset its output. At the end of this process, one or more NOP packets will be 
returned to reflect the availability of additional memory space, and the coupon counter at 
the receiver will be properly updated to follow the new status at the transmitter. 
 
Let us now analyze what takes place when a packet stored in memory is forwarded. In that 
case, the legacy behavior would be the return of a coupon because a buffer has been 
freed. However, with the proposed improved implementation that takes into account free 
memory bytes instead of free packet buffers, it might happen that the memory space freed 
by the forwarded packet is not large enough to store a full-sized packet, and thus, no 
coupon is returned. Therefore, the way to properly update freed memory information while 
forwarding packets is to simply increase the free-byte counter by the amount of space 
freed. The rest of the circuit presented in Figure 5 makes the decision of sending or not 
sending additional NOP packets as explained before. For example, Table 4 shows the 
operational progression as several packets of different lengths are received and later 
forwarded. As mentioned earlier, the minimum total memory size for each type of buffer is 
240 bytes (15 buffers, each 16 bytes long). We could be tempted to use 256 bytes as the 
most logical choice. However, 256 bytes would force us to use 5 bit coupon counters in 
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order to keep track of the sixteenth stored packet. Naturally, using an additional bit just to 
store one more packet would not be a good decision. Therefore, coupon counters should 
be 4 bits wide and the free-byte counters shown in Figure 5 should be 8 bits wide, 
discarding their four least significant bits. 
 

Packet Length Coupon Counter 
(A) 

Free-Byte 
Counter 

4 Most Significant Bits 
(MSBs) of Free-Byte 

Counter (B) 
Initially 15 240 15 
Packet 1 received: 8 bytes 14 232 14 
Packet 2 received: 12 bytes 13 220 13 
Packet 3 received: 8 bytes  12 212 13 

B is greater than A. Thus, the coupon count is adjusted by sending back a coupon and 
loading the coupon counter with the value in B 

 13 212 13 
Packet 4 received: 12 bytes 12 200 12 
Packet 5 received: 4 bytes 11 196 12 

B is greater than A. Thus, the coupon count is adjusted by sending back a coupon and 
loading the coupon counter with the value in B 

 12 196 12 
Packet 6 received: 16 bytes 11 180 11 
Packet 7 received: 4 bytes 10 176 11 

B is greater than A. Thus, the coupon count is adjusted by sending back a coupon and 
loading the coupon counter with the value in B 

 11 176 11 
Packet 8 received: 8 bytes 10 168 10 
Packet 9 received: 12 bytes 9 156 9 
Packet 10 received: 8 bytes 8 148 9 

B is greater than A. Thus, the coupon count is adjusted by sending back a coupon and 
loading the coupon counter with the value in B 

 9 148 9 
Packet 1 forwarded: 8 bytes 9 156 9 

Once the packet is forwarded, as B is not greater than A, no coupon is sent back 
Packet 2 forwarded: 12 bytes 9 168 10 
Once the packet is forwarded, as B is greater than A, a coupon is sent back and the coupon 

counter at the receiver is adjusted 
 10 168 10 
Packet 3 forwarded: 8 bytes 10 176 11 
Once the packet is forwarded, as B is greater than A, a coupon is sent back and the coupon 

counter at the receiver is adjusted 
 11 176 11 
Packet 4 forwarded: 12 bytes 11 188 11 

Once the packet is forwarded, as B is not greater than A, no coupon is sent back 
Packet 11 received: 4 bytes 10 184 11 

B is greater than A. Thus, the coupon count is adjusted by sending back a coupon and 
loading the coupon counter with the value in B 

 11 184 11 
Packet 5 forwarded: 4 bytes 11 188 11 

Once the packet is forwarded, as B is not greater than A, no coupon is sent back 
 
Table 4 – Coupon counter and free-byte counter progression as several packets are received and 
forwarded 
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So far the discussion has focused on the improved flow control protocol implementation for 
request packets. As mentioned before, data packets may suffer the same inefficiency. In 
this case, the improved implementation would operate in the same manner as described so 
far, except for the width of the free-byte counter, which should be at least 10 bits wide, 
discarding the six LSB bits so as to divide by 64 (representing the data packet length). 
 
 

V - Impact of the Improved Implementation on Latency 
 
The implementation of the efficient flow control protocol described in this paper is not 
expected to have any negative impact on packet latency, since packet transmission at the 
sender and packet forwarding at the receiver are not at all affected by it.  
 
To analyze the impact of the proposed efficiency enhancement on packet latency, we might 
separately study how coupons are returned by the receiver when it receives packets and 
how coupons are returned when the receiver forwards packets. In the first case, every time 
the transmitter sends a new packet, it decreases its coupon count as usual. Nevertheless, 
once this packet arrives at the receiver, it will recalculate the improved coupon count as 
described in the previous section. If the improved count shows that one or more additional 
packets might be stored at the receiver memory, then it will return additional coupons. Note 
that the free-byte count B in Figure 5 will always be equal to or greater than the coupon 
count A. The effect of the proposed enhancement on packet latency while receiving 
packets will never be negative. In fact, in a worst-case scenario, the behavior of the 
proposed flow control protocol will be the same as the traditional protocol, therefore having 
no impact whatsoever on packet latency. In non-worst-case scenarios, the transmitter will 
send packets earlier because it owns more coupons, thus reducing packet latency. 
 
In the latter case and as we have seen in the previous section, when the receiver is 
forwarding packets, coupons are returned in a delayed fashion, i.e., when a packet is 
forwarded, a coupon might not be returned if an additional full-sized packet cannot be 
stored. Compared with traditional protocol operation, however, this will not translate into 
any extra delay to the transmission of new packets by the transmitter, as the free-byte 
count (B) will always be equal to or greater than the coupon count (A). Additionally, coupon 
count A is continuously adjusted to equal count B when they differ. Thus, coupon count A 
will always be equal to or greater than the legacy coupon count. Therefore, with the 
enhanced flow control protocol, the transmitter will always own at least the same number of 
coupons that it would with the traditional flow control protocol. Consequently, the impact on 
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packet latency will be zero. If the transmitter owns more coupons, then packet latency will 
be reduced because packets are transmitted earlier. 
 
In summary and as shown in Table 4, the proposed protocol enhancement returns coupons 
earlier than the traditional protocol when the coupons can fit into an already allocated 
buffer. Taking into account that the transmitter owns additional coupons to keep filling the 
link with new packets (unless buffers are full), the slight extra delay that could be 
introduced by the proposed circuit will not delay packet transmission since the transmitter 
does not have to wait for the return of any coupons.  
 
 

VI - Conclusions 
 

This white paper has presented an efficient implementation of the HyperTransport flow 
control protocol that makes better use of memory resources. With this in mind, further 
considerations are in order: 
 
A) The proposed implementation improves memory usage. This can be leveraged to 
increase the number of accepted packets per given amount of available memory; or given 
an average number of packets to be accepted, to reduce memory requirements. Notice that 
since the benefits of this efficient implementation depend on the specific packets mix, we 
can only base ourselves on “average number of packets.” Notice also that according to the 
HyperTransport I/O Link Specification Revision 3.0, the minimum amount of buffers that 
transmitters must be able to track is 15. This should compel us to take into account the 
round-trip latency for control or data packets and their associated NOP packets in order to 
fully utilize link bandwidth. 
 
B) The improved implementation is expected to yield greater benefits in all those cases in 
which memory space at the receiver end is larger, as the improved protocol technique is 
based on average packet lengths. Therefore, a larger memory space will allow more 
packets to be included in the average. 
 
C) The proposed protocol improvement does not lie within the critical path, and therefore, it 
is not sensitive to small increments in latency due to non-optimized designs. In fact, as the 
circuitry proposed in this paper consists of several elementary elements, the same can be 
scattered to improve the overall silicon layout. 

 


