

Copyright 2007 HyperTransport Technology Consortium Rev 1.01 May 4, 2007

TECHNICAL
DOCUMENT

HyperTransport™ Consortium

“HTX™ BIOS”

“Generic HTX BIOS Guidelines”

The HyperTransport Consortium

www.hypertransport.org

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 2

TECHNICAL
DOCUMENT

The HyperTransport Technology Consortium disclaims all warranties and liability
for the use of this document and the information contained herein and assumes
no responsibility for any errors that may appear in this document, nor does the
HyperTransport Technology Consortium make a commitment to update the
information contained herein.

DISCLAMER
This document is provided “AS IS” with no warranties whatsoever, including any
warranty of merchantability, non-infringement, fitness for any particular purpose,
or any warranty otherwise arising out of any proposal, specification or sample.
The HyperTransport Technology Consortium disclaims all liability for infringement
of property rights relating to the use of information in this document. No license,
express, implied, by estoppels, or otherwise, to any intellectual property rights is
granted herein.

TRADEMARKS
“HyperTransport” and “HTX” are licensed trademarks of the HyperTransport
Technology Consortium.

Other product names used in this publication are for identification purposes only
and may be trademarks of their respective companies.

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 3

TECHNICAL
DOCUMENT

Table of contents

1. GOALS OF THIS DOCUMENT..4
2. HYPERTRANSPORT DEVICE INITIALIZATION...6
3. POWER-UP HYPERTRANSPORT INITIALIZATION...7

3.1. RESET SEQUENCE – HARDWARE INITIALIZATION TIMING DELAY ...7
3.2. RESET SEQUENCE – ALTERNATE DESIGN CONSIDERATIONS TO ALLOW FOR FPGA INITIALIZATION TIME8
3.3. DEVICE DETECTION AND UNITID ASSIGNMENT ...8
3.4. LINK FREQUENCY AND LINK WIDTH INITIALIZATION ...9
3.5. EXAMPLE HTX SCENARIOS ...12
3.6. HYPERTRANSPORT TUNNEL ON A HTX CARD SUPPORT...16

4. HYPERTRANSPORT INITIALIZATION DURING PCI ENUMERATION...17
4.1. RESOURCE ALLOCATION..17
4.2. SPECIAL REGISTER INITIALIZATION ...17
4.3. INTERRUPT INITIALIZATION...18
4.4. UNSUPPORTED HYPERTRANSPORT CAPABILITY INITIALIZATION BLOCKS ...21

5. FUTURE CONSIDERATIONS ON THE RADAR ..22
6. CONCLUSION...23
7. GENERIC HTX BIOS REQUIREMENTS MATRIX..24

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 4

TECHNICAL
DOCUMENT

1. Goals of this document

With an increasing number of companies leveraging the benefits of
HyperTransport technology, the HTX connector is being implemented on an
increasing number of compute platforms and peripheral / accelerator add-in
cards. Existing solutions require modification of platform specific BIOS (Basic
Input Output System) in order to recognize and configure the function(s) provided
by the HTX card – initial implementations have been performed in a ‘fixed’ way to
address ‘point’ solutions. This does nothing to address interoperability of existing
HTX devices or to reduce time to market and increase adoption of newly
developed HTX devices. This fundamental problem is impeding the progress of
the HTX ecosystem. The HyperTransport consortium and its members have
recognized this problem and launched a working group to understand and
address it. This document is intended to capture and communicate guidelines to
developers of HyperTransport devices, motherboards and BIOS in order to
reduce time to market and significantly improve ‘out of the box’ interoperability
leading to a healthy and growing HTX ecosystem.

The guidelines in this document are intended to describe “what” should happen
between platforms, BIOS and HTX devices as opposed to “how” it should
happen. This leaves IBV’s (Independent BIOS Vendors) and platform
manufacturers to innovate and implement the guidelines in a way that’s effective
and ‘compatible’ with their existing code base – it also ensures no single
implementation is favored over another for a level playing field. The initial
guidelines have been developed to address the most common implementation to
date ensuring we don’t burden the process with unnecessary complexities that
would impede the near term progress and success of this effort. Initial goals of
the guidelines are as follows: -

1. Identify / analyze current problem and HTX landscape
2. Determine supported configurations (HTX card based tunnel support, a

HTX slot downstream of a motherboard based HyperTransport tunnel
etc…)

3. Capture configuration mechanisms needed: -
a. Early link initialization (Reset delay, link width, link frequency, slot

limitations etc…)

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 5

TECHNICAL
DOCUMENT

b. POST (Power On Self Test) PCI enumeration
i. Memory window base address programming
ii. I/O window base address programming
iii. Interrupt allocation – 3 possible scenarios: -

1. No interrupts needed - supported
2. Devices ONLY needing interrupts during OS

operation – no POST legacy interrupt support) –
supported as follows: -

a. Native HyperTransport Interrupts
b. MSI interrupt delivery

3. Devices needing legacy interrupts during POST and
OS operation – NOT SUPPORTED due to
complexities with legacy interrupt delivery in POST

iv. HyperTransport memory remap capability block – no known
examples using this exist to date so it’s outside the scope of
this initial implementation – NOT SUPPORTED

c. OS based configuration
i. Proprietary register configuration under device driver control
ii. OS based interrupt configuration beyond BIOS programming

in POST
4. Clearly communicate ‘what is’ and ‘what is not’ expected for the first

Generic HTX BIOS implementation – but not how!
5. Drive adoption and adherence to the guidelines to ensure newly

developed devices can plug into a HTX enabled motherboard and
participate in a predictable configuration scheme and that the BIOS knows
what it can expect from HTX devices designed to participate in a generic
configuration mechanism. There may still be exceptions that require
custom development, however we hope to at least minimize and ideally
eliminate that need as this mechanism evolves.

6. Welcome participation / feedback from all vested consortium members to
improve the capabilities of this generic configuration mechanism as the
HTX ecosystem matures and increases in size.

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 6

TECHNICAL
DOCUMENT

2. HyperTransport Device Initialization

During a cold reset sequence (See HyperTransport I/O Link Specification for
definition of cold vs. warm reset), the HyperTransport device on the HTX card will
be initialized through the hardware-initiated link-width negotiation sequence and
is running at its default width and link frequency potential *. In addition, the
HyperTransport device will present itself as device 0 on the primary bus assigned
to the HyperTransport link on which it resides. The BIOS must go through the
software initialization process to detect the HyperTransport device and program
the link width and link frequency according to the capability of the
HyperTransport devices on both ends of the HyperTransport link and any system
board limitations. Below is an example of a typical BIOS initialization flow: -

* Note: HyperTransport devices are expected to be capable of operating at minimum frequency in support of hardware
based link capability negotiation. At least one case of a HyperTransport device being incapable of operating at the
MINIMUM frequency has been observed – this case would not be handled in a generic manner and would require specific
debug efforts.

Power-up HyperTransport initialization:
• Device detection and UnitID assignment
• Link Frequency and link width initialization

HyperTransport initialization during PCI
enumeration:
• Resource allocation
• Specific register initialization
• Interrupt initialization
• HyperTransport capability initialization

Boot to OS
• Device driver proprietary configuration
• Additional OS based interrupt programming

Cold Reset

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 7

TECHNICAL
DOCUMENT

3. Power-up HyperTransport initialization

3.1. Reset sequence – hardware initialization timing delay

Note: The reset timing requirements can be found in the specification as
follows: -

HyperTransport™ I/O Link Specification Revision 2.00b – Section 12

In addition there are often device specific timing specifications / diagrams as
part of specific vendor documentation.

Some HTX implementations may need to delay the reset process allowing an
FPGA (Field Programmable Gate Array) based solution to be ready to respond
to initial HyperTransport packets. The need for the delay mechanism will
depend on the type of reset that occurs and whether the FPGA gets reset
requiring re-initialization / programming. The preferred way to achieve this
delay in a HTX environment is as follows: -

1. Back Drive Reset# - this is the ONLY supported hardware mechanism
for allowing HTX based devices to delay reset until they are ready to
respond. While there are references to this need in the HyperTransport
I/O Link Specification (See: Sections “12.2 System Power up, Reset,
and Low-Level Link Initialization” and “2 Signaling – Table 2”) it is
somewhat weak and as such has not been implemented on some of the
current generation HTX enabled motherboards, there is a proposal to
add emphasis for this requirement in the latest generation of
HyperTransport / HTX specifications. As systems increase in
complexity the need to buffer RESET# will increase, as a result system
designers should consider a CPLD approach to allow support of the
open-drain functionality while enabling better control of transition times
and more complex RESET# distribution models.

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 8

TECHNICAL
DOCUMENT

3.2. Reset sequence – alternate design considerations to allow for FPGA
Initialization time

The hardware mechanism described in Section 3.1 is the only official
mechanism promoted by these guidelines; however it is acknowledged that the
current generation platforms do not support the mechanism. As a result
developers may need to use one or more of the following interim workarounds
in order to delay the reset process long enough to allow FPGA based
implementations to initialize: -

Workaround 1: In at least one implementation a ~0.5 second delay has been
observed between PWROK and RESET#, by keying off of PWROK assertion
an FPGA should have enough extra time to achieve programming ahead of
RESET# getting de-asserted. Where flexible control over PWROK Æ RESET#
timing is possible a delay of >=0.5 seconds is highly recommended for
platforms needing to support HTX based FPGA implementations.

Workaround 2: In another implementation the clock to the FPGA flash was
increased to improve initialization load times. This should also be considered
in conjunction with other suggestions to improve timing margins for any delay
mechanisms implemented.

Workaround 3: It may be possible to implement an optional BIOS Delay
mechanism – With the HTX slot and device specific table entries it could be
possible to add an early BIOS delay / reset mechanism if a HTX device is
present to allow FPGA’s to be ‘ready’. This implementation requires a
software mechanism capable of generating a COLD reset (See:
HyperTransport™ I/O Link Specification Revision 2.00b – Section 12.1
Definition of Reset). This approach should only be considered if the hardware
mechanism controlling RESET# is not available.

3.3. Device detection and UnitID assignment

After power-up reset, the HyperTransport device presents itself as device 0 on
the primary bus on which it resides. The BIOS must detect the HyperTransport
device by reading the vendor and device ID at device 0 and then assigning a

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 9

TECHNICAL
DOCUMENT

non-zero value to its base UnitID. The allocated UnitID then becomes the
device number of the HyperTransport device. The HyperTransport device can
be accessed with this new device number after this process.

Since the BIOS may not be able to obtain all necessary information regarding
the HyperTransport device on a HTX card, the HyperTransport device
detection process will assume: -

1. Only one HTX slot is supported on a given HyperTransport link
(physical limitation anyway)

2. The generic HTX BIOS implementation must support the
following HTX based configurations: -

a. A single HyperTransport cave or tunnel device
b. Two exactly identical HyperTransport tunnel devices in a

chain
3. When a tunnel device is present it may be connected to the host

CPU via either ‘side’ and the HTX BIOS will dynamically handle
this (see section 3.6 for more information).

4. A valid (non 0xFFFF) vendor/device ID must be present

3.4. Link frequency and link width initialization

After device detection and UnitID assignment, the BIOS will maximize the link
width and frequency to achieve the highest performance of HyperTransport link
operation. The maximum link width and frequency will be determined by the
following factors:

1) The width and frequency reported in the HyperTransport Interface

Capability blocks
2) The highest capability supported by a given motherboard

implementation as reported via the HTX slot descriptor structure in
the BIOS (this will typically reflect the maximum supported
capabilities from the HTX specification being implemented unless
there are overriding motherboard limitations as a result of a design /
layout / manufacturing issue)

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 10

TECHNICAL
DOCUMENT

3) The highest capability supported by a given HyperTransport device
as reported in the device specific slot descriptor structure in the
BIOS.

4) User defined options selected via a BIOS set-up option that
overrides the automatic configuration (STRONGLY recommended).

If the HyperTransport device on a HTX card requires a specific setting of the
link width and frequency, or there is a limitation on the system board, the BIOS
should allow OEM (Original Equipment Manufacturers) or BIOS vendors to
override the information detected from the HyperTransport device (a
mechanism to provide this data in the slot and device specific descriptors is
expected to support this requirement). An example of the HTX slot and device
specific descriptors is shown below: -

Today’s static table example: -

<HyperTransport Directory Start>
;
; Note – HT Frequency capabilities are specified as a 16-bit field
; indicating supported frequencies as follows: -
;
; Bit positions as defined in section 7.5.7 of the HyperTransport I/O Link Spec
;
; Bit 0 = 200MHz, Bit 1 = 300MHz, Bit 2 = 400MHz … bit 6 = 1GHz
; Bits [10:14] reserved for future use, Bit 15 = Vendor Specific
;
<CPU0_Link0, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link1, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link2, Device_ID, 0x0035, 16-bit, OTHER, … > Å FIXED HTX device
<CPU1_Link0, Device_ID, 0x0075, 16-bit, OTHER, … >

<HyperTransport Directory End>

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 11

TECHNICAL
DOCUMENT

Proposed 2-tier generic table example: -

In the example above the fundamental shift is from FIXED device specific
descriptors describing a HTX slot and it’s capabilities to one where the ‘generic’
configuration described in this document will be applied. There are also
provisions for an Optional Exception table to handle device specific details
that absolutely cannot be handled in a generic manner. The goal is to have no
motherboard specific limitations placed in the HTX slot descriptor and no
device specific entries needed in an exception table, however these
mechanisms are detailed to cover possible exceptions where a slot or device
requires special consideration (for example: a motherboard layout error results
in a 600MHz capable HTX slot).

<HyperTransport Directory Start>
;
; Note – HT Frequency capabilities are specified as a 16-bit field
; indicating supported frequencies as follows: -
;
; Bit positions as defined in section 7.5.7 of the HyperTransport I/O Link Spec
;
; Bit 0 = 200MHz, Bit 1 = 300MHz, Bit 2 = 400MHz … bit 6 = 1GHz
; Bits [10:14] reserved for future use, Bit 15 = Vendor Specific
;
<CPU0_Link0, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link1, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link2, HTX, 0x0035, 16-bit, OTHER, … > Å GENERIC HTX SLOT
<CPU1_Link0, Device_ID, 0x0075, 16-bit, OTHER, … >

<HyperTransport Directory End>

<HTX Exception Table_Start>

HTX specific table (use for device specific exceptions)
<HTX Exception Table End>

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 12

TECHNICAL
DOCUMENT

3.5. Example HTX scenarios

Below are a couple of example scenarios with fictitious BIOS descriptors
showing the resulting ‘lowest common denominator’ configuration for each
case.

In each scenario the following HyperTransport link parameters will be used: -

Key: -

A = Host CPU HyperTransport link capabilities
B = HTX slot HyperTransport capabilities
C = HTX based HyperTransport device capabilities

3.5.1. Scenario 1

The senior design team at company ‘X’ developed their latest generation
motherboard with HTX enablement and followed all the motherboard design
guidelines and HTX specification requirements closely. They completed
bring-up and have a customer interested in using a HTX based FPGA for
acceleration of a financial application by off-loading some specific math
algorithms. During motherboard validation they have determined their HTX

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 13

TECHNICAL
DOCUMENT

implementation is working correctly and they are able to support the full
HTX capabilities as specified – 800MHz 16-bit HyperTransport link. They
are using an FPGA capable of running at 400MHz with an 8-bit link width.
As a result their BIOS would implement the following HyperTransport
directory: -

The effective capability parameters for this scenario are as follows: -

A = AMD Opteron™ = 16-bit 1GHz capable
B = HTX slot = 16-bit 800MHz capable
C = HTX based FPGA = 8-bit 400MHz capable

In this scenario the final HTX HyperTransport link configuration should be 8-
bits wide at 400MHz in order to accommodate the slower FPGA
capabilities as reported by the FPGA HyperTransport implementation
during early link initialization.

<HyperTransport Directory Start>
;
; Note – HT Frequency capabilities are specified as a 16-bit field
; indicating supported frequencies as follows: -
;
; Bit positions as defined in section 7.5.7 of the HyperTransport I/O Link Spec
;
; Bit 0 = 200MHz, Bit 1 = 300MHz, Bit 2 = 400MHz … bit 6 = 1GHz
; Bits [10:14] reserved for future use, Bit 15 = Vendor Specific
;
<CPU0_Link0, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link1, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link2, HTX, 0x0035, 16-bit, OTHER, … > Å GENERIC HTX SLOT
<CPU1_Link0, Device_ID, 0x0075, 16-bit, OTHER, … >

<HyperTransport Directory End>

;---
; Exception table not needed – only compliant devices
; have been seen so far ☺
;---
;<HTX Exception Table_Start>
;HTX specific table (use for device specific exceptions)
;<HTX Exception Table End>

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 14

TECHNICAL
DOCUMENT

3.5.2. Scenario 2

Company ‘Y’ developed their latest generation server motherboard with
HTX enablement. They completed bring-up and have a customer
interested in using a HTX based Infiniband card to enable high performance
cluster configurations. During motherboard validation they have determined
their HTX implementation has a layout problem and they are unable to
support the full HTX capabilities as specified – they can only support a 600
MHz 16-bit HyperTransport link. As a result their BIOS would implement
the following HyperTransport directory: -

The effective capability parameters for this scenario are as follows: -

A = AMD Opteron™ = 16-bit 1GHz capable
B = HTX slot = 16-bit 600MHz capable
C = HTX based IB Device = 16-bit 800MHz capable

In this scenario the final HTX HyperTransport link configuration should be
16-bits wide at 600MHz in order to accommodate the HTX slot limitations

<HyperTransport Directory Start>
;
; Note – HT Frequency capabilities are specified as a 16-bit field
; indicating supported frequencies as follows: -
;
; Bit positions as defined in section 7.5.7 of the HyperTransport I/O Link Spec
;
; Bit 0 = 200MHz, Bit 1 = 300MHz, Bit 2 = 400MHz … bit 6 = 1GHz
; Bits [10:14] reserved for future use, Bit 15 = Vendor Specific
;
<CPU0_Link0, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link1, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link2, HTX, 0x0015, 16-bit, OTHER, … > Å MHz LIMITED HTX SLOT
<CPU1_Link0, Device_ID, 0x0075, 16-bit, OTHER, … >

<HyperTransport Directory End>

;---
; Exception table not needed – only compliant devices
; have been seen so far ☺
;---
;<HTX Exception Table_Start>
;HTX specific table (use for device specific exceptions)
;<HTX Exception Table End>

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 15

TECHNICAL
DOCUMENT

as a result of a design error and reported via the motherboard specific HTX
slot descriptor.

3.5.3. Scenario 3

Company ‘Z’ developed their latest generation single CPU motherboard
with HTX enablement. They completed bring-up and have a customer very
interested in using a HTX based Network Processor (NP). During
motherboard validation they determined the motherboards HTX slot is able
to support the full HTX capabilities as specified – 800Mhz 16-bit
HyperTransport link, however the selected network processor (with Device /
Vendor ID: 0xFDAA 0x09FA) has an errata specific to the HyperTransport
link that means it only supports an 8-bit wide 400MHz link even though it
claims to be 16-bit 800MHz capable. As a result their BIOS would
implement the following HyperTransport directory with a device specific
exception entry describing this limitation: -

<HyperTransport Directory Start>
;
; Note – HT Frequency capabilities are specified as a 16-bit field
; indicating supported frequencies as follows: -
;
; Bit positions as defined in section 7.5.7 of the HyperTransport I/O Link Spec
;
; Bit 0 = 200MHz, Bit 1 = 300MHz, Bit 2 = 400MHz … bit 6 = 1GHz
; Bits [10:14] reserved for future use, Bit 15 = Vendor Specific
;
<CPU0_Link0, Device_ID, 0x0075, 16-bit, OTHER, ...>
<CPU0_Link1, HTX, 0x0035, 16-bit, OTHER, … > Å GENERIC HTX SLOT
;<CPU0_Link2, Device_ID, 0x0075, 16-bit, OTHER, ...> Å Not connected

<HyperTransport Directory End>

;---
; Exception table needed because: -
; 1) Network Processor model N, revision X.y found to be non-compliant
;---
<HTX Exception Table_Start>

; Note – HT Frequency capabilities are specified as a 16-bit field
; indicating supported frequencies as follows: -
;
; Bit positions as defined in section 7.5.7 of the HyperTransport I/O Link Spec
;
; Bit 0 = 200MHz, Bit 1 = 300MHz, Bit 2 = 400MHz … bit 6 = 1GHz
; Bits [10:14] reserved for future use, Bit 15 = Vendor Specific
;
HTX Exception <0xFDAA_09FA, 0x0005, 8-bit, HTX.ValidateDevice (DevID, True)>

<HTX Exception Table End>

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 16

TECHNICAL
DOCUMENT

The effective capability parameters for this scenario are as follows: -

A = AMD Opteron™ = 16-bit 1GHz capable
B = HTX slot = 16-bit 800MHz capable
C = HTX based NP Device = claims 16-bit 800MHz capable

In this scenario the final HTX HyperTransport link configuration should be 8-
bits wide at 400MHz in order to accommodate the HTX based network
processor errata that limit its HyperTransport capability. This is
communicated via a device specific exception entry as the device itself
claims to be 800MHz 16-bit capable which would result in the HTX
HyperTransport link being programmed incorrectly, potentially causing a
system failure (although the HTX generic BIOS should handle this
gracefully if at all possible).

Note the addition of a fictitious ‘HTX.ValidateDevice(DevID, True)’ function
parameter in the device specific exception entry – this could allow the
execution of a ‘validate device’ function that further determines the need to
apply the capability limitations based on a specific revision of a chip that
has the same Device and Vendor ID thus allowing more granular support of
exception cases and a potential future workaround should the chip get fixed
but maintain the same device and vendor ID.

3.6. HyperTransport tunnel on a HTX card support

If a HyperTransport tunnel device is populated on a HTX card it is possible for
the link port implementation to vary (either side of the device could face the
host CPU). The BIOS must implement a dynamic mechanism to check the
‘Master Host (Bit 10)’ and set the ‘Default Direction (Bit 11)’ of the Command
Register (Offset 02h) before proceeding with link width and frequency
initialization.

In addition to handling the dynamic configuration of the upstream vs.
downstream link the generic HTX BIOS must support a configuration that

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 17

TECHNICAL
DOCUMENT

allows two exactly identical HyperTransport tunnels to be connected
downstream of each other on a single HTX card. By limiting the configuration
to two exactly identical tunnel devices we hope to simplify the implementation
of this requirement. This will allow HTX developers better leverage of the
bandwidth provided by HyperTransport. By supporting two exactly identical
devices on a single HTX slot (which is all most systems offer) it allows a
doubling of functional density and further increases the performance and value
of HTX based functions.

4. HyperTransport initialization during PCI enumeration

4.1. Resource allocation

After the device number is assigned and the link width and frequency are
initialized, the HyperTransport device will be initialized by the standard BIOS
PCI enumeration process. There are no special resource allocation
requirements at this point regardless of whether the HyperTransport device is a
bridge or device.

Note: There is an assumption that the BIOS is expected to build any ACPI
(Advanced Configuration and Power Interface) and / or MP (Multi-Processor)
tables required to support the HTX card in the same way it would for a
standard PCI based device. If there are device specific capabilities
implemented by the HTX card then custom BIOS development may be
required – custom ASL (ACPI Source Language) methods for example.

4.2. Special register initialization

Any device specific register initialization (beyond the first 64 bytes of PCI
configuration address space) required by the HyperTransport device on a HTX
card can be handled by: -

1. PCI Option ROM (Read Only Memory)

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 18

TECHNICAL
DOCUMENT

This is a standard approach used by PCI devices requiring specific
configuration during BIOS POST initialization. Note: this will only be
needed for devices that participate in the boot process before the OS is
available.

2. Specific BIOS porting work provide by OEM or BIOS vendors

The specific register setting can be done by OEM or BIOS vendors
during the BIOS building time. The vendor and device ID can be used
for device presence test in this case.

3. OS based configuration

For devices needing specific configuration that do not need to function
ahead of the OS booting it’s better to configure them via OS based
software (device driver / application programming as identified in item 3
below).

4.3. Interrupt initialization

Three potential interrupt requirement scenarios have been identified as follows:
-

1. No interrupts needed - supported
2. Interrupts needed during OS present time only - supported
3. Legacy interrupts needed in POST and during OS present – NOT

SUPPORTED

Note: Future HyperTransport 3.0 devices are expected to support legacy INTx messaging –
this is outside of the scope of this initial implementation but is noted here to keep it on the radar
for future consideration as needed.

Within each of these scenarios there are implementation specifics as described
in the subsequent scenario specific sections: -

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 19

TECHNICAL
DOCUMENT

4.3.1. No interrupts needed - supported

This scenario covers a HTX based device that needs no interrupt support
during the pre-OS or OS present time. This is an easy configuration to
support as there’s no interrupt specific configuration needed, however it is a
valid and supported configuration.

4.3.2. Interrupts needed during OS present time only - supported

This scenario covers a HTX based device that DOES NOT need legacy
interrupts during the BIOS POST process but does require interrupt delivery
during the OS present time. There are currently Four ways defined for
software to interact with HyperTransport interrupts on non-bridge
HyperTransport devices as follows: -

1. The HyperTransport Interrupt Discovery and Configuration capability
block.

2. The HyperTransport MSI Mapping Capability paired with a PCI MSI
Capability or a PCI MSI-X Capability.

3. The memory mapped IOAPIC interface to Interrupt Discovery and
Configuration Capability Block. (See: HyperTransport™ I/O Link
Specification, Appendix F.1.4)

4. The INTx messages that implement virtual wire support (introduced
in the HyperTransport™ I/O Link Specification Revision 1.05 –
Section 8.4 INTx Virtual Wire Messages)

The Interrupt Discovery and Configuration capability block is unusable as a
generic configuration mechanism using legacy interrupt mode (where
everything uses the legacy 8259 PIC) as there is no INTx signal or packet
support in today’s implementations (future HyperTransport 3.0 devices are
expected to introduce INTx capabilities). Instead this mechanism would
require programming by the OS to generate the interrupt in an
implementation specific way and is thus outside the scope of this document.
The BIOS can safely ignore this capability.

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 20

TECHNICAL
DOCUMENT

The HyperTransport MSI Mapping capability defines a mapping from the
PCI MSI 4 byte interrupt packet to the 12-byte HyperTransport interrupt
packet. The base address of the interrupt target window is substituted and
the low order bits are moved around so they fit in the HyperTransport
packet (See: HyperTransport™ I/O Link Specification Revision 2.00b,
Section B.5 Message Signaled Interrupts for specific mapping details). On
the PC architecture the base addresses and the meaning of all bits are well
defined for both MSI and HyperTransport interrupts, and the mapping
preserves the well defined meaning on a PC. The definition of the packet
mapping is in appendix (B.5 Message Signaled Interrupts).

A PC BIOS needs to ensure the base address is set to its default value of
0x0000_0000_FEEx_xxxx. If a fixed x86 implementation is present this will
be the default (identified by ‘Fixd’ bit 17 in the MSI mapping capability
register). For non-fixed or non-x86 architectures this default value should
be programmed (See: HyperTransport™ I/O Link Specification Revision
1.05c (or later) section 7.12 - MSI Mapping Capability). Then BIOS must
set the enable bit in the HyperTransport MSI Mapping Capability (bit 16).

Once configured, a HyperTransport device with a standard PCI MSI or PCI
MSI-X capability will perform logical mapping between the PCI MSI interrupt
packet and the HyperTransport interrupt packet before transmitting the
HyperTransport packet. It is strongly recommended that the PCI MSI
mapping method be implemented as there is much broader operating
system support for standard PCI MSI interrupts than for the HyperTransport
interrupt discovery and configuration capability.

Note: Based on recent experience with a current implementation it has
been strongly recommended the BIOS not attempt to share interrupts
allocated to a HTX based device with any other device in the system.

Note: If the BIOS doesn’t enable the PCI compatible MSI mapping
capability it can be programmed later by operating system, device driver or
application code.

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 21

TECHNICAL
DOCUMENT

4.3.3. Legacy interrupts needed in POST and during OS present –
NOT SUPPORTED

This scenario covers a HTX based device that REQUIRES legacy
interrupt delivery during BIOS POST, this requirement is NOT
SUPPORTED by the initial implementation and may be addressed by a
future implementation as needed. By not supporting legacy interrupt
delivery we preclude HTX based devices from participating in the OS boot
process – a HTX based network or storage device could only be used to
load OS code if it could work in a polled mode (sub-optimal
implementation). This is not considered a significant limitation for today’s
solutions and is thus not supported due to the complications and delays it
would introduce near term. If there is an identified near term or future
need for HTX legacy interrupt support then please contact the
HyperTransport technology consortium to flag the need and provide
specific details.

Note: Revision 1.05 of the HyperTransport I/O Link Specification
introduced INTx Virtual Wire messages. As of today we’re not aware of
devices capable of handling these interrupt packets. With the introduction
of HyperTransport 3.0 devices there will likely be support for these new
packets. INTx packet support will allow interrupts to be delivered in legacy
interrupt mode, which will enable interrupt handling during POST / boot.
This legacy interrupt delivery mechanism would allow all OS's to handle
interrupts from HTX cards.

4.4. Unsupported HyperTransport Capability initialization blocks

Other HyperTransport capability blocks, such as the address remapping
capability, have not been implemented on any HTX card that we’re aware of to
date. As a result, handling of this capability block is not supported by this initial
implementation and is noted only here for future consideration as needed. If
you have immediate or future needs then please contact the HyperTransport
consortium to flag your need.

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 22

TECHNICAL
DOCUMENT

5. Future considerations on the radar

This section exists to capture additional items for future consideration to make
sure they are not lost.

1. STRONG RECOMMENDATION: For debug purposes a HyperTransport
link width / frequency set-up option should be provided to allow manual
override of link configuration parameters. This configuration *could* also
be provided in a production BIOS although there is concern that users
could configure the system in a way that would stop it from booting.

2. Legacy interrupt delivery – INTx.
3. HyperTransport address remap capability block support.
4. This document is focused exclusively on HTX based devices but there are

examples of ‘other’ HyperTransport connectivity (socket stuffers for
example). Could this mechanism be extended to support HTX-like generic
configuration of those devices?

5. Revision 3.0 of the HyperTransport I/O Link Specification introduces new
capabilities – while not supported here, care should be taken so as to not
preclude support for new features in the near future (AC coupled mode,
split links, INTx delivery and link power management are examples of
potential features needing support).

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 23

TECHNICAL
DOCUMENT

6. Conclusion

There exists a significant window of opportunity to exploit the clear advantages of
HyperTransport technology in performance oriented applications. With the
advent of the HTX connector it provides motherboard and chip developers a
vehicle to closely couple ‘solutions’ in an interoperable way. Minimum
investment is needed on the part of the motherboard developer to support a HTX
slot – the mechanicals and electricals are fairly straight forward and well
understood. From a silicon standpoint there are clearly applications benefiting
from the distinct advantages of a low latency high bandwidth connection direct to
the main system compute resources. Platform vendors have stepped up and
provided an increasing number of HTX enabled motherboards – increasing
silicon developments are underway. With the help of the HyperTransport
technology consortium members, identifying and eliminating potential barriers to
adoption opens up a significant opportunity for all involved to unleash the real
potential of HyperTransport technology on the computing world at large – let’s
align our efforts towards executing on this common goal!

The HyperTransport technology consortium thanks you for your interest and
looks forward to your continued support and participation.

Note: There is a parallel HyperTransport technology consortium effort to address
LinuxBIOS as a development / debug vehicle for HTX based implementations. If
you’re interested in participating in either / both HTX related working groups then
please contact Mario Cavalli at: -

E-mail: Mario.Cavalli@hypertransport.org
Phone: +1 (925) 968-0220

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 24

TECHNICAL
DOCUMENT

7. Generic HTX BIOS requirements matrix

The following table provides a matrix of required versus unsupported mechanisms to
help manufacturers and BIOS developers quickly identify the needs communicated in
these guidelines: -

Feature
BIOS

Required
OS

Required

Unsupported /
Recommended

/ On RADAR
HTX reset delay feature – FPGA initialization mechanism
(Hardware / Software) – See 3.1 and 3.2

;

Two tier HTX descriptor mechanism allowing deployment options
for motherboard / device specific details – See 3.4

;

HyperTransport link width / frequency initialization mechanism
resulting in lowest common denominator selection based on HTX
slot and device capabilities from descriptor table entries and device
enquiry mechanisms – See 3.5

;

Mechanism to detect and configure a HTX based tunnel device
host interface direction dynamically and two exactly identical
tunnels downstream of each other on a single HTX card – See 3.6

;

HyperTransport MSI remap register programming default checked
against addendum in HyperTransport I/O Link Specification –
default for x86 systems should be programmed, other architectures
may require specific programming – See 4.3

;

Standard POST PCI enumeration scheme configuration of I/O and
Memory base address registers, control register etc… to ensure
HTX device is accessible to OS drivers / applications.

;

Native HyperTransport interrupt delivery mechanism supported –
See 4.3 ;

PCI compatible MSI interrupt delivery mechanism supported – See
4.3

 ;

Legacy interrupt delivery in POST for HTX devices – See 5 :
HyperTransport address remap capability block support – See 5 :
Non-HTX connected device support via generic configuration
mechanism - See 5

 :

HyperTransport 3.0 specific capability configuration - See 5 :
STRONGLY RECOMMENDED: BIOS set-up option to override
HyperTransport link width and frequency settings for development /
debug purposes - See sections 3.4 and 5

 ;

HyperTransport “Generic HTX BIOS Guidelines” May 4, 2007 25

TECHNICAL
DOCUMENT

For more information on HyperTransport technology please visit the
HyperTransport Technology Consortium website at www.hypertransport.org
where additional white papers, detailed specifications and information on
becoming a member of the HyperTransport Consortium are available.

A low-cost membership in the Consortium enables member companies to have
royalty-free access to HyperTransport IP and to participate in the Consortium’s
technical working groups that manage future extensions of the HyperTransport
specifications and protocols.

