
 
 
 
 
 
 

 
 

WHITE PAPER 
 

 

 
HyperTransport - White Paper April 5, 2007 www.HyperTransport.org 

 
Speculative Forwarding: An Implementation for Reduced 
Latency in HyperTransportTM Technology-Based Systems 

 
 

Jose Duato Federico Silla 
Universidad Politecnica de Valencia, Spain,  

Simula Research Laboratory, Norway 
 

Universidad Politecnica de Valencia, Spain 
 

Brian Holden 
Vice President and Chair, Technical Working Group 

HyperTransport Technology Consortium 
  

 
Executive Summary 
 
HyperTransport interconnect technology has become a highly pervasive technology due to its ability 
to provide a high-performance, point-to-point link with the lowest communication latency for chip-to-
chip and board-to-board interconnects. This white paper discusses a new method for further 
reducing latency in systems based on the HyperTransport interconnect technology standard.  It 
describes the advantages and disadvantages of speculative forwarding, an alternative way of 
designing HyperTransport devices that could significantly reduce latency in long chains without 
requiring changes to the HyperTransport Link Specification. 

 
Introduction 
 
In order to understand the advantages of speculative forwarding, it is important to first review how 
HyperTransport systems are architected and how links traditionally operate.  HyperTransport 
technology-enabled devices include processors, which are referred to as hosts; tunnels, which 
implement two HyperTransport link interfaces and provide connectivity to HyperTransport 
peripherals, as well as forward traffic to and from other daisy-chained HyperTransport peripheral 
controllers in the system; and bridges, which are used to logically “bridge” the HyperTransport link 
with peripherals complying with other interconnect standards. 
 
HyperTransport links are bidirectional, consisting of two separate unidirectional sets of signals that 
connect two HyperTransport devices in point-to-point fashion.  Each unidirectional set of signals can 
be 2, 4, 8, 16, or 32 bits wide. Additionally, each set contains one or more CTL (Control) signals 
used to differentiate control and data transmission, and one or more CLK (Clock) lines for clocking 
packet transmission. Refer to Section 2 of the HyperTransport I/O Link Specification Revision 3.0 for 
a complete description of HyperTransport signalling.  
 
Communication among HyperTransport devices is carried out by exchanging packets. Every time a 
HyperTransport device needs to communicate with another HyperTransport device, it creates a 
packet that contains the command or data to be transmitted. Command packets may include read 
and write requests or responses; atomic read-modify-write commands; and flush, fence and target-
done commands intended for better controlling the transactions in the link. When one of these 



 
   

 
 

Page 2 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

Host Tunnel 1 Tunnel 2 Cave 

Peripheral Peripheral 

commands requires some data to be transferred, a second packet containing the data is sent to the 
link, following the corresponding command packet. 
 
In the HyperTransport protocol some command packets, like requests, are 8 bytes long, while other 
command packets, such as responses, fence, or flush packets, are 4 bytes long. Packets can be 
extended by using an address extension, a source identifier extension, or both. Since packet 
extensions are always 4 bytes long, the length of command packets exchanged by HyperTransport 
devices may be 4, 8, 12, or 16 bytes, depending on the type of request and the number of 
extensions added to the packet. 
 
In order to provide the HyperTransport protocol with robustness against transmission errors, a 32-bit 
Cyclic Redundancy Code (CRC) is appended to packets for protection. If a packet’s corresponding 
CRC reports a transmission error, the packet is immediately discarded. Note that this feature was 
first implemented based on the latest HyperTransport 3.0 specification, although it existed in earlier 
HyperTransport revisions also. All revisions have a link-based CRC as well that is not aligned with 
the packets. Refer to Section 10 of the HyperTransport I/O Link Specification Revision 3.0 for more 
details. 
 
A HyperTransport system consists of one or more daisy chain interconnected HyperTransport 
devices. In the simplest connection scheme, only one daisy chain is implemented. In this case, the 
chain extends from the host interface at one end, to a cave device at the other end. A cave is a 
HyperTransport link termination device that implements only one link interface. Between the host 
and the cave there may be zero or more tunnels providing connectivity to peripherals. The maximum 
number of devices interconnected in a single HyperTransport chain is 32. Figure 1 shows an 
example of such a chain containing a host, a couple of tunnel devices, and a cave device. 

 
 

Figure 1:  HyperTransport fabric composed of a host, two tunnels, and one cave 
 

Basic HyperTransport Device Behavior 
 
As mentioned above, HyperTransport devices communicate by exchanging packets. When a device 
needs to send a packet to another device, it puts it onto the link.  After some wire propagation delay, 
the first packet slice arrives at the next device in its path towards the final destination. As the slices 
of the packet arrive (the link could be 2, 4, 8, 16, or 32 bits wide), they are temporarily stored in an 
input buffer until the whole packet has been received.  At that moment, the receiving device 
compares the received per-packet CRC for that packet with the one that it has computed in order to 
check if the packet was received correctly or otherwise. If the reception was error-free, the device 
analyzes the packet header and decides whether to process the packet or forward it to the next 
device on the link. If the current device is not the packet’s intended destination, it forwards the 
packet towards its destination by passing it onto the next link. This process repeats as many times 
as point-to-point links exist between the source and the intended target device. 



 
   

 
 

Page 3 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

The way HyperTransport devices store arriving packets and later forward them is traditionally known 
as packet switching. Packet latency exhibited by this switching technique is proportional to both 
packet length and path length. Thus, if packet length is n bytes (including per-packet CRC), link 
width is w bits, and path length is d hops, then the overall packet latency from source to destination 
will be given by the formula: 
 

)8*(* procwire tt
w

ndL ++=  

 
where twire represents the propagation delay along the wire and tproc is the processing time required 
by the device to check the per-packet CRC and analyze whether the packet must be forwarded or 
not. Table 1 shows packet latency for several path lengths and link widths. 
          

 Link Width 

Path Length 2 4 8 16 32 

5 
165 
245 
405 

85 
125 
205 

45 
65 

105 

25 
35 
55 

15 
20 
30 

10 
330 
490 
810 

170 
250 
410 

90 
130 
210 

50 
70 

110 

30 
40 
60 

20 
660 
980 
1620 

340 
500 
820 

180 
260 
420 

100 
140 
220 

60 
80 

120 

30 
990 
1470 
2430 

510 
750 
1230 

270 
390 
630 

150 
210 
330 

90 
120 
180 

Table 1: Packet latency for several link widths and path lengths. Numbers in red, green, and blue 
represent latency for 4, 8, and 16-byte packets respectively. A 32-bit per-packet CRC has been 
considered for computing latencies. Latency is measured in clock cycles. Path length is measured in 
hops. Propagation delay along the link and processing time at the tunnels has been assumed to be 
zero and one clock cycle, respectively. 

 
The basic device behavior described above is the simplest possible implementation. However, in 
order to reduce packet latency, two improvements may be simultaneously applied to the design. The 
first improvement is the use of cut-through switching instead of packet switching. The second 
improvement is the use of speculation. 
 
Cut-through Device Design 
 
With cut-through switching, packets are forwarded before they are completely received. In this case, 
once the packet header is received and decoded, and the output port is computed, the packet is 
forwarded through that output port at the same time it is being received through the input port. This 
behavior is described in Section 10.3.3 of the HyperTransport I/O Link Specification Revision 3.0.  
Effectively, a tunnel may begin forwarding a packet before validating it in the case when the packet 
is a valid command, and the per-packet CRC for that packet can be checked before sending the per-
packet CRC on the next link. In this case, if the packet being received presents no transmission 



 
   

 
 

Page 4 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

error, once the per-packet CRC has been checked, it is forwarded onto the next link. Typically, in the 
event of a transmission error, the packet would be discarded. However, since the packet has already 
been forwarded, it is impossible to discard it.  Therefore, in order to signal a transmission error, the 
packet is stomped by sending the inverse of the correct per-packet CRC. 
 
This cut-through implementation - commonly used in HyperTransport-based designs - reduces 
packet latency because the packet must not be completely received before being forwarded. 
However, the first bytes of the packet containing the destination identifier must be received before 
forwarding the packet in order to compute the output port. This is required because devices have 
two possible outputs for an incoming packet: if the packet is destined for the device, then it is 
accepted and no forwarding is performed. Instead, if the current device is not the destination of the 
packet, it is forwarded. Note that waiting for the destination identifier to arrive is only necessary for 
control packets but not for data packets, as the latter immediately follow the former and the 
destination for the latter is specified in the preceding control packet. 
 
The destination identifier for a control packet is not always located at the same position in the 
packet. Thus, depending on the type of control packet, one, two, or more bytes must be received 
before being able to compute the output port for the packet. Table 2 shows the number of bytes that 
must be received before computing the output port for the different types of control packets. 
Accordingly, Table 3 shows packet latency for several path lengths and link widths. In this table, 16-
byte packets are not shown because their latency is the same as in Table 1. 

 

Packet length Packet type Bytes required  
before forwarding 

Flush 1 

Fence 1 

Target Done 2 
4 

Read/Write Response 2 

Broadcast 1 

Read/Write Request 8 8 

Atomic RMW 8 

Packet with address extension 12 
12 

Packet with source ID extension Depends on control packet 

16 Packet with both source ID and address extension 16 

Table 2 – Number of bytes that must be received before computing the output port for the different 
types of control packets 

 



 
   

 
 

Page 5 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

 
 Link Width 

Path Length 2 4 8 16 32 

5 
53 
69 
69 

29 
37 
37 

17 
21 
23 

13 
13 
15 

11 
11 
12 

10 
78 

114 
94 

44 
62 
52 

27 
36 
33 

23 
23 
25 

21 
21 
22 

20 
128 
204 
144 

74 
112 
82 

47 
66 
53 

43 
43 
45 

41 
41 
42 

30 
178 
294 
194 

104 
162 
112 

67 
96 
73 

63 
63 
65 

61 
61 
62 

Table 3: Packet latency for several link widths and path lengths. Numbers in red and black  
represent latency for 4-byte packets that require 1 or 2 bytes, respectively, to be received before 
being forwarded. Numbers in green represent latency for 8-byte packets that require 1 byte  
to be received before beginning forwarding. 32-bit per-packet CRC has been considered for 
computing latencies. Latency is measured in clock cycles. Path length is measured in hops. 
Propagation delay along the link and processing time at the tunnels has been assumed to be zero 
and one clock cycle, respectively. 
 

 
In general, when using cut-through switching in the context mentioned above, packet latency from 
source to destination can be computed using the following formula: 
 

))
8

,max((*8))*8,1(max(* whn
w

tt
w

hdL procwire −+++=  

 
In this formula, packet length is n bytes (including per-packet CRC), link width is w bits, and path 
length is d hops. Additionally, twire represents the propagation delay along the wire and tproc is the 
processing time required by the device to analyze whether the packet must be forwarded or not. On 
the other hand, h is the number of bytes to be received before forwarding the packet. This parameter 
is the same as the one presented in the right-most column in Table 2. Comparing this formula with 
the one for packet switching presented previously, one can see how distance and packet length are 
combined in an additive manner instead of in a multiplicative way, thus noticeably lowering latency. 
 
According to the numbers in Tables 2 and 3, cut-through switching is expected to significantly 
reduce latency in cases where read responses and write requests carry data. In these cases, once 
the first 2 or 8 bytes of the packet have arrived (for read responses and write requests, respectively), 
the device can start forwarding both the control packet and the associated data packet. In the case 
of flush and fence control packets, as their length is only 4 bytes and, moreover, 2 bytes must be 
received before forwarding the packet, latency will not be so noticeably reduced since an important 
part of the packet must be received before starting to forward it. This is even worse in cases where 
the destination identifier is located in such a way that the whole packet must be received before 



 
   

 
 

Page 6 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

starting to forward it, as in the cases for read requests, atomic RMW, or packets with source and 
address extensions. 
 
Speculative Device Design 
 
Cut-through switching is based on forwarding the packet before it is completely received. In this way, 
latency can be drastically reduced for packets carrying data.  However, cut-through switching does 
not help much when packets do not contain data. Fortunately, we can reduce latency even more by 
observing that in cut-through switching the packet is validated and the device is intrinsically 
speculating.  This is because a received per-packet CRC could indicate a transmission error, thereby 
revealing that the packet should have never been forwarded. Moreover, Section 10.3.3 of the 
HyperTransport I/O Link Specification Revision 3.0 implicitly introduces another kind of speculation, 
much more interesting from the latency point of view. The only condition required by the specification 
is that packets must be valid commands to be eligible for speculative forwarding.  Since the 
command field arrives before the destination identifier, it is possible to forward a packet as soon as 
the command field has been completely received. In this case, the destination of the packet is not 
known by the time the packet is being forwarded. Therefore, a device might speculate on the 
correctness of the received packet at the same time that it speculates on the output port for that 
packet. As with cut-through designs, if output port speculation is wrong and the packet is 
erroneously forwarded because the current device is actually the packet destination, the only 
solution is for the current device to stomp the packet in order to signal such routing mistake. 
 
Speculatively forwarding a packet before the output port is computed by the routing logic is only 
useful if the probability of selecting the correct output port is very high. For most topologies, that 
probability is relatively low. However, for a linear array, as in the case of HyperTransport chains 
(assuming that speculation is not implemented for the secondary port of a bridge), such probability is 
very high. In fact, a non-cave device in a HyperTransport chain must always forward a packet 
arriving at one of its ports to the other port unless the device is the packet’s destination. It is this high 
probability that makes speculation truly useful for reducing latency when there are several devices in 
the chain. 
 
As mentioned above, packets must be valid commands to be eligible to be speculatively forwarded. 
As the command field appears in the first byte of the packet, receiving the first byte is enough to start 
forwarding the packet. Thus, this speculative implementation is especially useful for links equal to or 
wider than 8 bits because the command field is received in the first slice of the packet. However, for 
2- or 4-bit wide links, the receiving device cannot begin forwarding the packet until 4 or 2 slices of it, 
respectively, have arrived. Table 4 presents packet latency for the same path lengths and link widths 
as Table 1. Numbers in Table 4 can be also compared with the ones in Table 3. In this case, please 
note that Table 3 only shows latencies for 4 and 8-byte packets, while Table 1 and Table 4 also 
show latencies for 16-byte packets. 
 
The data in these tables illustrates how this technique effectively reduces packet latency. In fact, if 
packet length is n bytes (including per-packet CRC), link width is w bits, and path length is d hops, 
then the overall packet latency from source to destination will be: 

 
 

 
 

L = d * (max(l,    
 
) + t wire + tproc) +   

  
* (n – max (l,  

    
)) 8  

w
8  
w

w  
8



 
   

 
 

Page 7 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

where twire represents the propagation delay along the wire and tproc is the processing time required 
by the device to set the output port. Additionally, the formula above assumes that the command field 
is located in the first byte of the packet (which is the case in HyperTransport), thus being necessary 
to receive just the first byte of the packet to start forwarding it. If this formula is compared with the 
one for cut-through presented in the previous section, it can be seen that both of them are very 
similar, the only difference being the removal of the factor h in the last formula, due to the fact that, 
in this case, it is only necessary to receive the first byte of the packet, containing the command field. 
Indeed, this difference is the essence of speculation as it has been presented in this section. 
 
In the case for each of the different link widths defined in HyperTransport, the formula can be sim-
plified by making the max terms constant. For example, for a 4-bit wide link, the formula would be: 
 

)1(*2)2(* −+++= nttdL procwire  
 
Figure 2 merges numbers in Tables 1, 2, 3, and 4 graphically, for 8-bit and 16-bit wide links. Note 
that in the case of 4-byte packets, numbers refer to the case when it is required to receive the first 
two bytes of the packet before forwarding it. In the case of 8-byte and 16-byte packets, the number 
of bytes required is 8 and 16 bytes, respectively. This choice may seem to be unfair, however, 
remember that when using cut-through, some types of packets require that the whole packet is 
received before starting to be forwarded. Figure 2 is intended to point this out. 
 
Ultimately, HyperTransport specifications allow speculative devices to coexist with cut-through 
devices. When different devices work together, the simplest ones will manage stomped packets as if 
they had suffered a transmission error and will discard them, therefore limiting the effects of cut-
through and/or speculation. 

 Link Width 

Path Length 2 4 8 16 32 

5 
53 
69 

101 

29 
37 
53 

17 
23 
29 

13 
15 
19 

11 
12 
14 

10 
78 
94 

126 

44 
52 
68 

27 
33 
39 

23 
25 
29 

21 
22 
24 

20 
128 
144 
176 

74 
82 
98 

47 
53 
59 

43 
45 
49 

41 
42 
44 

30 
178 
194 
226 

104 
112 
128 

67 
73 
79 

63 
65 
69 

61 
62 
64 

Table 4 – Packet latency for several link widths and path lengths. Numbers in red, green, and blue 
represent latency for 4, 8, and 16-byte packets, respectively. 32-bit per-packet CRC has been 
considered for computing latencies. Latency is measured in clock cycles. Path length is measured in
hops. Propagation delay along the link and processing time at the tunnels has been assumed to be 
zero and one clock cycle, respectively. 



 
   

 
 

Page 8 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

0

100

200

300

400

500

600

700

5 10 20 30
Path Length (hops)

La
te

nc
y 

(c
yc

le
s)

Cut-through 4 bytes
Speculative 4 bytes
Cut-through 8 bytes
Speculative 8 bytes
Cut-through 16 bytes
Speculative 16 bytes

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Speculating One Step Beyond 
 
The idea behind speculatively forwarding a packet before having completely received and validated 
it can be extended further in order to use a more general and aggressive model of speculation. 
Instead of waiting for the reception and processing of the command field before starting to forward a 
packet, speculation can be generalized so that a packet is forwarded as soon as its first slice has 
been received. By first slice, we mean the first piece of information, which could be 2, 4, 8, 16, or 32 
bits depending on link width.  
 
Such generalization reduces latency with respect to the model presented in the previous section for 
cases in which receiving the first byte of the packet takes several clock cycles. More precisely, when 
link width is 2 or 4 bits, a greater reduction in latency is achieved than in the previous case. For 8, 
16, and 32-bit links, latency remains the same as in the previous case.  
 
Using this more aggressive speculation, packet latency will be given by the formula: 

 

 
 

Figure 2: Packet latency comparison for cut-through and speculative 
implementations. a) 8-bit wide link. b) 16-bit wide link. 

0

50

100

150

200

250

300

350

5 10 20 30
Path Length (hops)

La
te

nc
y 

(c
yc

le
s)

Cut-through 4 bytes
Speculative 4 bytes
Cut-through 8 bytes
Speculative 8 bytes
Cut-through 16 bytes
Speculative 16 bytes

a)

b) 



 
   

 
 

Page 9 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

 

1*8)1(* −+++= n
w

ttdL wireproc  

 
As indicated above, d is the path length in hops, w is link width, and n is the packet length. The 
formula shows that packet length and path distance are not directly combined, therefore lowering 
latency as in the previous section. Additionally, latency is only proportional to path length without 
taking into account the amount of time required to receive the first byte. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 5 shows packet latency for several path lengths and link widths. Numbers for link widths equal 
to 8, 16, and 32 are the same as in Table 4, as explained above. They are presented in the table just 
for the sake of completeness. Also, Figure 3 (in the next page) shows a comparison between both 
speculation techniques for 2 and 4-bit links. 
 

 Link Width 

Path 
Length 2 4 8 16 32 

5 
41 
57 
89 

25 
33 
49 

17 
23 
29 

13 
15 
19 

11 
12 
14 

10 
51 
67 
99 

35 
43 
59 

27 
33 
39 

23 
25 
29 

21 
22 
24 

20 
71 
87 
109 

55 
63 
79 

47 
53 
59 

43 
45 
49 

41 
42 
44 

30 
91 
107 
139 

75 
83 
99 

67 
73 
79 

63 
65 
69 

61 
62 
64 

Table 5 – Packet latency for several link widths and path lengths. Numbers in red, 
green, and blue represent latency for 4, 8, and 16-byte packets, respectively. 32-bit per-
packet CRC has been considered for computing latencies. Latency is measured in clock 
cycles. Path length is measured in hops. Propagation delay along the link and 
processing time at the tunnels has been assumed to be zero and one clock cycle, 
respectively. 



 
   

 
 

Page 10 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

b)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Other Considerations 
 
Speculation reduces packet latency at the expense of wasting some bandwidth in the chain. A 
device forwards a packet before knowing whether or not it is the packet destination.  Since the 
packet is already travelling along the next link before this is known, it is impossible to discard it.  At 
that point, the only thing that the device can do is to stomp the packet, so that when it reaches a 
non-speculative device, it is discarded. In the worst case, this non-speculative device could be the 
host or the cave, and therefore the packet would have been forwarded along the whole chain 
wasting resources. This is not really as bad as it seems. If DirectRoute is used (refer to Section 4.9.6 
of the HyperTransport I/O Link Specification Revision 3.0 for a complete description of peer-to-peer 
traffic) then most of the traffic will be statistically concentrated in the central part of the chain, leaving 
the ends of the HyperTransport chain less congested. In this case, the extra bandwidth used at the 
ends of the chain by speculatively forwarding packets introduces no overhead (except for power 
consumption) because such extra bandwidth would have unlikely been used due to the nature of 
traffic, unless a peer-to-peer communication takes place at the very end of the chain. On the other 
hand, if DirectRoute is not used, then Host-Reflected routing must be used. In this case, at the host 

 
 

 
Figure 3 – Packet latency comparison for the legacy speculative 
forwarding and the more aggressive implementation. a) 2-bit wide link.  
b) 4-bit wide link.  

0

50

100

150

200

250

5 10 20 30
Path Length (hops)

La
te

nc
y 

(c
yc

le
s)

Speculative 4 bytes
Aggressive 4 bytes
Speculative 8 bytes
Aggressive 8 bytes
Speculative 16 bytes
Aggressive 16 bytes

0

50

100

150

200

250

5 10 20 30
Path Length (hops)

La
te

nc
y 

(c
yc

le
s)

Speculative 4 bytes
Aggressive 4 bytes
Speculative 8 bytes
Aggressive 8 bytes
Speculative 16 bytes
Aggressive 16 bytes

a)



 
   

 
 

Page 11 
 
 

 

 
HyperTransport – Speculative Forwarding White Paper                    April 5, 2007 www.HyperTransport.org 

side of the chain no bandwidth is wasted because all the packets must arrive at the host. At the 
opposite end, the use of extra bandwidth is not a problem because that bandwidth in the 
downstream direction would have never been used otherwise - extra power consumption being the 
only consideration. When mixing DirectRoute with HostReflected traffic, the central part of the chain 
will experience most of the traffic while the ends will be less congested. Thus, central part of the 
chain is the natural system bottleneck, limiting overall performance. In this context, the extra 
bandwidth used at the ends of the chain will not degrade performance. 
 
Speculatively forwarding packets, in any of the two versions presented in this white paper, is just an 
alternative way of designing HyperTransport devices that could significantly reduce latency in long 
chains. Although speculative forwarding envisages a different HyperTransport device 
implementation, it does not require any change in the HyperTransport Link Specification, which even 
implicitly introduces this feature. Furthermore, devices implemented using these techniques can be 
directly connected to and transparently interoperate with non-speculative devices. In this case, 
packets would be quickly forwarded along the sub-chain of speculative devices until they reach a 
non-speculative one, where the packet (or at least, its header) would be stored, validated, and later 
forwarded. If efficiently planned, such intermixing of devices may help to discard stomped packets, 
thus avoiding wasted bandwidth. A trade-off between latency, bandwidth, and power consumption 
may be achieved by conveniently locating non-speculative devices near the ends of the chain, so 
that they may stop stomped packets and prevent them from advancing further in the chain. 
 
On the other hand, speculative forwarding might be treated as a programmable feature, so that 
programmers could select the way HyperTransport devices behave. This could be achieved by using 
a device-specific control bit - a common practice in the HyperTransport ecosystem. This is possible 
by means of extra control bits available in the device’s control registers that are not controlled by the 
HyperTransport specification and that are commonly used to handle these type of extra features. In 
this way, if the behavior of the application is known, then the desired behavior for each 
HyperTransport device could be programmed so that parts of the chain do forward packets 
speculatively while other devices do not, thereby acting as walls that split packet traffic in 
accordance with different latency/bandwidth requirements. 

 
Finally, it should be noted that speculative forwarding is one example of reversible behaviors that are 
often useful for system optimization.  A similar method can be employed in the endpoint as well, with 
a device taking only "reversible" actions before the packet is known to be good.  Another comparable 
use of reversible behaviors is "speculative execution" in pipelined microprocessors that employ 
branch prediction.  In this kind of optimization approach, a classic trade-off that the system architect 
must deal with is gain versus complexity of the optimization. 
 
Conclusions 
 
In this paper we have presented the benefits (and drawbacks) of speculatively forwarding packets. 
This technique is achieved by means of a new device implementation that does not require any 
change the HyperTransport I/O Link Specification. In fact, such kind of implementation is implicitly 
introduced in Section 10.3.3 of the HyperTransport specification. A more aggressive speculative 
implementation has also been proposed. 
 
The benefits of this technique are mainly a noticeable reduction in packet latency. This reduction 
depends on link width, packet length, and path length. For example, for 8-bit links, packet latency is 
reduced by a factor of 2.6 (worst case) to 8 (best case). For 16-bit links, the reduction in packet 
latency can be expected to be between 2 and almost 5 times. In all case, this speculative forwarding 
technique achieves lower packet latency.  


