

HyperTransportTM
Technology

HyperTransport to Optic
Converters

Rev. 1.01 6/2002

Copyright 2002 HyperTransport Technology Consortium

Confidential Information

 The HyperTransport Technology Consortium disclaims all warranties and liability for the use of this
document and the information contained herein and assumes no responsibility for any errors that may
appear in this document, nor does the HyperTransport Technology Consortium make a commitment to
update the information contained herein.

DISCLAMER

This document is provided “AS IS” with no warranties whatsoever, including any warranty of
merchantability, noninfrigment, fitness for any particular purpose, or any warranty otherwise arising out of
any proposal, specification or sample.

The HyperTransport Technology Consortium disclaims all liability for infringement of property rights,
relating to use of information in this document. No license, express, implied, by estoppels, or otherwise, to
any intellectual property rights is granted herein.

Trademarks

HyperTransport is a trademark of the HyperTransport Technology Consortium.

AMD is a trademark of Advanced Micro Devices, Inc.

Other product names used in this publication are for identification purposes only and may be trademarks of
their respective companies.

HyperTransport Technology is a result of collaborative development efforts between AMD and other industry partners.
This new high-speed, high performance link specification is being offered as an open standard through membership to
the HyperTransport Technology Consortium.

About HyperTransport™ Technology

HyperTransport technology is a high-speed, high-performance, point-to-point link for integrated circuits, and is
designed to meet the bandwidth needs of tomorrow’s computing and communications platforms. HyperTransport
technology helps reduce the number of buses while providing a high-performance link for PCs, workstations, and
servers, as well as numerous embedded applications and highly scalable multiprocessing systems. It is designed to
allow chips inside of PCs, networking and communications devices to communicate with each other up to 48 times
faster than with some existing bus technologies.

About the HyperTransport Technology Consortium

The HyperTransport Technology Consortium is a nonprofit corporation managed by its members. The consortium
promotes the common business interests of providers to the networking, telecommunications, computer and high-
performance embedded application through the conduct of a forum for the future development and adoption of the
HyperTransport specification.

AMD, Apple Computers, Broadcom, Cisco Systems, NVIDIA, PMC-Sierra, SGI, Sun Microsystems, and Transmeta
are the charter members that comprise the Executive Committee of the HyperTransport Technology Consortium.

Companies interested in the HyperTransport specification are invited to join the consortium. Members of the
consortium pay annual dues and receive a royalty-free license to HyperTransport IP, gain access to technical
documentation and may attend consortium meetings and events. To become a member, visit the consortium Web site
at www.hypertransport.org. Please review the Bylaws of the HyperTransport Technology Consortium, and complete
the online membership application.

The HyperTransport Consortium, HyperTransport Technology and combinations thereof are trademarks of
HyperTransport Consortium.

Revision History: HyperTransport to Optics Converters

Rev Date Comment

1.00 05.02 Document created.

1.01 06.02 Document revised and updated.

HyperTransport Consortium Confidential

Preface

This application note presents the outlines of two serialization alternatives to give users added options
when connecting HyperTransport 1.x components that may be on different PC boards or in different
shelves. These alternatives consume more power and add latency compared to the native HyperTransport-
1.x interface. These alternatives are:

• Utilizing the XGMII/XAUI components standardized for use in 10Gb/s ethernet applications.

• Utilizing parallel optic components designed for use with fiber optic ribbon cables.

A challenging aspect of this problem is HyperTransport has an 8.25-bit interface, not an 8-bit interface.
Although the CTL line arrives every clock edge, it is only allowed to change every 32 bits. CTL
distinguishes control double words from data double words. It is somewhat difficult to reduce this interface
to an eight-bit interface since the HyperTransport I/O Link allows control packets to be inserted in the
middle of data packets. The solutions presented herein collect the CTL bit for each 32 bits and carry it
transparently.

Note: This application note may contain errors. At the time of its preparation, this note had not been
realized into a device and may incorporate errors or contain omissions. Regard this document as an
outline of how to approach these two problems rather than as a specification.

HyperTransport to XGMII/XAUI Conversion

The following is the outline of a conversion function between HyperTransport rev 1.x and XGMII. XGMII
may be useful for some users because through XGMII you can get to the 10G ethernet PHYs as well as to
XAUI (4x3.125 Gb/s) and other 10GE solutions over one fiber. Through XAUI, a HyperTransport I/O link
can be carried over a single fiber in at a moderate cost by using some Coarse WDM transceivers that are
available in the marketplace. These transceivers utilize the XENPAK Multi-Source Agreement. This
outline shows a means of allowing a flexible number of XGMII/XAUI interfaces to be used, supporting
differing bandwidths.

A representative part to try to connect to is the PM8355 QuadPHY-II device from PMC-Sierra. This
device has four bidirectional SERDES parts in it. These SERDES can run at 3.125 Gb/s each. The part as
a whole can pass a 10-gigabit ethernet.

References

For details about XGMII and XAUI, see the IEEE 802.3ae specification at
http://grouper.ieee.org/groups/802/3/ae/index.html

Rev 1.01 HyperTransport to Optic Converters 1

http://grouper.ieee.org/groups/802/3/ae/index.html

HyperTransport Consortium Confidential

For details about the PM8355, go to www.pmc-sierra.com

For details about XAUI transceivers, go to www.xenpak.org

Block Diagram of HyperTransport to XGMII Conversion

HT-1.x
Device

HT-1.x to
XGMII

Converter

XGMII to XAUI
Converter

XAUI based
CWDM Optical

Transmitter

XAUI to XGMII
Converter

XGMII to
HT-1.x

Converter

XAUI based
CWDM
Optical

Receiver

HT-1.x
Device

Fiber

This is where
a 10GE MAC
would fit
using N=4

This is where
the far end
10GE MAC
would fit
using N=4

The XGMII/XAUI Converter
1. Use the XGMII/XAUI solution but disable the trunking feature found some multi-channel XAUI

parts. Details can be found in the IEEE 802.3ae spec.

2. Select the HyperTransport clock frequency that fits the available XGMII bandwidth with some
overhead (the amount as per step 15 below).

3. Label the N XGMII interfaces 0 to (N-1) and their collected data inputs 0 to (N*8-1). M is the
label for the Mth XGMII interface.

2 HyperTransport to Optic Converters Rev 1.01

http://www.pmc-sierra.com/
http://www.xenpak.org/

HyperTransport Consortium Confidential

4. Every J bytes have the HT-1.x to XGMII converter put a comma character into interface 0. (An
XGMII interface has nine bits, 1 for control and 8 for data. A comma character is a special control
code.)

5. At a K byte offset to the next lower numbered XGMII interface, insert a comma character. Chose
the K so that J = K * N. With knowledge of J and K, the receiver can deskew the byte lanes by
tracking the position of the comma characters. Spreading the bytes out reduces the latency of the
solution.

6. Create a frame 80 bytes long consisting of 16 sets of an Overhead byte plus 4 bytes which contain
the information found on the CAD lines. Delimit this frame with a special 8B10B non-comma
command code.

7. Encode bits 7 and 5 of the Overhead byte as the CTL bit and bit 6 as the inverse of the CTL bit, all
associated with the following 4 CAD bytes. Bit 4 is reserved

8. Encode bits 3 to 0 of the Overhead byte with the following message:

a. Nibble 0 - bit 3 PwrOK, bit 2 RESET#, bit 1 LDTSTOP#, bit 0 LDTREQ#

b. Nibble 1 - FrameCount – incrementing MOD 16, 4 bit count of frames

c. Nibbles 2-3 – the link width as determined per section 12.2 of HT 1.03

d. Nibbles 4-7 – a CRC-16 on the previous frame including both the user data and the CTL
Overhead data

e. Nibbles 8-11 – count of the # of non-user bytes included between the 8B10B delimiters for
the previous frame

f. Nibbles 12– 15 – 16 bit user-defined data

9. Don’t use any of the data in the Overhead bytes until they have been validated by the CRC-16.

10. If there is not enough data to fill the XGMII line, put a special 8B/10B character on the line (by
using the XGMII CTL pin) that is different from either the comma character or the frame delimiter
control character of step 6. Design it so that one of these characters is inserted every P bytes on
average.

11. By interpreting the XGMII control words, the receiver can reconstruct the exact number of clock
pulses that were received from the HT-1.x interface by the transmitter. Use the count of the # of
non-user bytes in the Overhead Word as a check of the observed counts to make the PLL more
tolerant to bit errors.

12. Produce a reconstruction of those clock pulses.

13. Smooth that reconstructed clock with a PLL. Use the smoothed clock to drive the HT-1.x interface.

14. Pass the receive data through a FIFO and read it out with the smoothed clock, sending it over the
HT-1.x interface.

Rev 1.01 HyperTransport to Optic Converters 3

HyperTransport Consortium Confidential

15. The HT-1.x clock frequency that can supported is determined from the speed of the XGMII
interface and the values of J, K N, and P from above.

16. Use the data from the Overhead byte to control the PwrOK, RESET#, LDTSTOP# and LDTERQ#
outputs. See discussion below.

Implementation

PWROK, RESET#, LDTSTOP#, and LDTREQ# Support

Since these signals are Open Drain signals, the conversion function must remember which end asserted
them. If a signal is asserted in one direction, it must not be asserted in the reverse direction through the
link. If both ends assert the signal simultaneously, the link should remember that the signal was asserted
when the assert from the other end arrived and should not assert it locally.

Link Width Indication

Because the conversion device may be narrower than is supported by the two ends, the conversion device
must participate in the link width auto negotiation procedure by propagating on the CAD lines the
minimum of its own supported width and the far end’s supported width as described in section 12.2 of the
HyperTransport I/O Link specification rev 1.03.

Link Frequency Support

The PLL in the receiver must be agile enough to support a range of frequencies. HyperTransport I/O Link
specification rev 1.03 defaults to 200 MHz on reset, so this value must be supported by the HyperTransport
to XGMII conversion device. The upper frequency range is application specific, but the conversion device
must support all of the configurable frequencies between 200 MHz and the maximum frequency.

The conversion device may support this by observing the link frequency at the transmit end and
reproducing that frequency at the receive end.

Because the maximum supported frequency of conversion device and the XGMII/XAUI link may be less
than what is supported by the HyperTransport nodes, the system software may need to be aware of the
presence and limitations of the conversion device when configuring the link frequency CSR bits in the
HyperTransport nodes. An alternative solution is for the transparent link to become either a
HyperTransport tunnel device or a pair of HyperTransport tunnel devices. In this case, the link frequency
CSR bits would then be configured as normal.

Latency

The latency of this solution is significant, perhaps on the order of 14 or more byte times. If you want lower
delay, you could generate the XAUI signals directly. The difficulty with this solution is that the rates are
high.

4 HyperTransport to Optic Converters Rev 1.01

HyperTransport Consortium Confidential

The added latency of the XGMII solution may increase the buffer sizing required in the nodes to which it
connects for those nodes to support full bandwidth. A standard problem when adding latency between
nodes is that it may bring out operational problems within those nodes.

Errors

Since HyperTransport I/O Link specification rev 1.03 is intolerant of errors, and this overall solution is
likely to have a measurable error rate, this link should only be used with the 1.x release that adds the error
handling protocol.

Implementation Discussion

An advantage of this solution is that the converter chip is all at moderate frequency. Another advantage of
this solution is that it leverages the 10GE components.

The implementation has some FIFOs, barrel shifters at each end and a PLL at the far end.

Alternative Implementation

If the Transmit clocks at the two ends are synchronized through some other means, it may be possible to
loop back the transmit clock at each end for use as the receive clock. This avoids the need for a PLL.

HyperTransport to Parallel Optics Conversion

The following is the outline of a conversion function between HT -1.x and Parallel Optics components.

A representative part to try to connect to is the Infineon V23832-T1431-M1 and V23832-R421-M1 Parallel
Optical Link devices or “PAROLI” device. This pair of devices has 12 LVDS I/O links. It has no clock
encoding or recovery, instead it has simple LVDS in and out. This device interfaces with fiber optic ribbon
cables.

Reference

http://www.infineon.com/cmc_upload/documents/037/639/V23832_T1431-R421_M1_020123.pdf

Rev 1.01 HyperTransport to Optic Converters 5

http://www.infineon.com/cmc_upload/documents/037/639/V23832_T1431-R421_M1_020123.pdf

HyperTransport Consortium Confidential

Block Diagram of HyperTransport to Parallel Optics Conversion

HT-1.x Device

HT-1.x to
Parallel Optics

Converter

Parallel Optics
Based Optical

Transmitter

Parallel Optics
Based Optical

Receiver

Parallel Optics
to HT-1.x
Converter

HT-1.x Device

FIber

The Parallel Optics Converter
1. Select the HyperTransport clock frequency that fits the available parallel optics bandwidth.

2. Label the PAROLI I/O Opt[11:0}

3. In the transmit portion of the converter, Retime the CAD input as per the HyperTransport electrical
specification.

4. Since the optics typically have 12 transceiver pairs. The CAD information will always appear on
Opt[7:0]

a. When connected to a 2 bit interface use Opt[1:0]

b. When connected to a 4 bit interface use Opt[3:0]

c. When connected to an 8 bit interface, use Opt[7:0]

d. When connected to a 16 bit interface, put the information retimed from CAD[7:0] first on
Opt[7:0] followed by the data retimed from CAD[15:8]

e. When connected to a 32 bit interface, put the information retimed from CAD[7:0] first on
Opt[7:0] followed by the data retimed from CAD[15:8], then CAD[23:16], then
CAD[31:24].

6 HyperTransport to Optic Converters Rev 1.01

HyperTransport Consortium Confidential

Rev 1.01 HyperTransport to Optic Converters 7

5. Put the CTL bit on Opt[8]

a. For 2, 4, and 8 bit interfaces, put the retimed CTL bit on directly

b. For 16 bit interfaces, put a duplicated copy of the associated CTL bit for each of the two
bytes.

c. For 32 bit interfaces, put four duplicate copies of the associated CTL bit for each of the
four bytes.

6. Create an 8 byte Overhead frame as per the following:

a. Nibble 0 - bit 3 PwrOK, bit 2 RESET#, bit 1 LDTSTOP#, bit 0 LDTREQ#

b. Nibble 1 - FrameCount – incrementing MOD 16, 4 bit count of frames

c. Nibbles 2-3 – the link width

d. Nibbles 4-7 – a CRC-16 on the previous 16 byte frame including both the user data and the
CTL data

e. Nibbles 8– 15 – 16 bit user-defined data

7. Encode that frame via byte synchronous HDLC.

8. Put that encoded frame on Opt[9] every 16 bytes (which is slower than the worst possible HDLC
expansion).

9. Don’t use any of the data in the Overhead bytes until they have been validated by the CRC-16.

10. Put a half rate (DDR style) clock on Opt[10] with the rate appropriate to the data to be handled,
presumably using a PLL to create that clock.

11. In the receiver, use the clock from Opt[10] to retime the data.

12. Also use the clock on Opt[10] to drive a PLL to generate the clock to go out on the CLK pin
dividing as per step 5.

13. Use the transitions on the CTL bits on Opt[8] to indicate how to demultiplex the data to the proper
CAD outputs.

14. Put the CTL bits from Opt[8] out on the CTL line at the proper moment.

15. Use the information from the Overhead frame to control the PwrOK, RESET#, LDTSTOP#, and
LDTREQ#. See discussion below.

HyperTransport Consortium Confidential

8 HyperTransport to Optic Converters Rev 1.01

Implementation

PWROK, RESET#, LDTSTOP#, and LDTREQ# Support

Since these signals are Open Drain signals, the conversion function must remember which end asserted
them. If a signal is asserted in one direction, it must not be asserted in the reverse direction through the
link. If both ends assert the signal simultaneously, the link should remember that the signal was asserted
when the assert from the other end arrived and should not assert it locally.

Link Width Indication

Because the conversion device may be narrower than is supported by the two ends, the conversion device
must participate in the link width auto negotiation procedure by propagating on the CAD lines the
minimum of its supported width and the far end’s supported width as described in section 12.2 of the
HyperTransport specification rev 1.03.

Link Frequency Support

The PLL in the receiver must be agile enough to support a range of frequencies. HyperTransport I/O Link
specification rev 1.03 defaults to 200 MHz on reset, so this value must be supported by the HyperTransport
to XGMII conversion device. The upper frequency range is application specific, but the conversion device
must support all of the configurable frequencies between 200 MHz and the maximum frequency.

The conversion device may support this by observing the link frequency at the transmit end and
reproducing that frequency at the receive end.

Because the maximum supported frequency of conversion device and the XGMII/XAUI link may be less
than what is supported by the HyperTransport nodes, the system software may need to be aware of the
presence and limitations of the conversion device when configuring the link frequency CSR bits in the
HyperTransport nodes. An alternative solution is for the transparent link to become either a
HyperTransport tunnel device or a pair of HyperTransport tunnel devices. In this case, the link frequency
CSR bits would then be configured as normal.

Latency

The latency of this solution is significant, perhaps on the order of 10 or more byte times. If you want lower
delay, you could generate the XAUI signals directly, but the rates are high. The added latency may
increase the buffer sizing needed in the nodes to achieve full bandwidth.

The added latency of the XGMII solution may increase the buffer sizing required in the nodes to which it
connects for those nodes to support full bandwidth. A standard problem when adding latency between
nodes is that it may bring out operational problems within those nodes.

HyperTransport Consortium Confidential

Rev 1.01 HyperTransport to Optic Converters 9

Errors

Since HyperTransport I/O Link specification rev 1.03 is intolerant of errors, and this overall solution is
likely to have a measurable error rate, this link should only be used with the 1.x release, which adds the
error handling protocol.

