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1. INTRODUCTION
Cluster computing is becoming an increasingly important and pop-
ular trend in high performance computing. Current state of the art in 
cluster computing is to use commodity computing nodes and add-
ing communication devices like Myrinet, Infiniband or Quadrics. 
This approach replaces the standard interconnect, which is the least 
performing component in those systems, by a high performance 
System Area Network (SAN). The result is a significant speedup of 
the parallel system. At the same time, it enables low system costs 
through the use of COTS (Components off the shelf) for most parts 
of the system. Within the last decade, much effort has been spent in 
the development and improvement of SANs. With success: routing 
mechanisms and chip fall-through latencies have improved steadily. 
Additional functional features like embedded processors, user-level 
communication, memory management units and support for fre-
quent parallel communication patters have been added. As a result, 
today’s SANs are very mature and highly optimized devices.

Nevertheless, such systems have a serious weakness: computing 
and communication resources are only loosely coupled over a hier-
archy of buses, with the bottleneck being a high-latency, non-cache 
coherent I/O bus. Currently, PCI-X and PCI Express are commonly 
used for that. One of the implications is that a large fraction of the 
end-to-end message latency in modern SANs is introduced by the I/
O bus. Latency is however one of the most critical performance cri-
teria of SANs. Thus, the efficient fusion of computing and commu-
nication into a scalable network of computers constructed from 
basic building blocks is still an unreached goal. To overcome this 
limitation, computation and communication resources have to move 
much closer to each other.

AMD’s Opteron processors offer a unique opportunity to do so, as 
they do not use a proprietary front side bus, but 3 HyperTransport 
interfaces per processor. The adoption of the HyperTransport 
Expansion Connector (HTX) specification [3] and mainboards that 
are equipped with this connector now make it possible to directly 
connect devices to an Opteron processor. This results in a major 
increase of performance [4], which also can be seen in practice with 
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Pathscale’s InfiniPath, currently the only HyperTransport-enabled 
NIC. Of course, not only NICs benefit from the direct HyperTrans-
port connection. Any device with high bandwidth or latency 
requirements, as FPGA coprocessors for example, will gain from 
the increased performance. 

A very challenging task appears when FPGAs are used to interface 
the HT link of the Opteron processor, no matter if it is used for pro-
totyping or in a production system. Current Opteron processors use 
Hypertransport link speeds of 1GHz DDR, a value which will very 
likely increase steadily over time. [22] found out that the gap in crit-
ical path delay from FPGA to a standard-cell ASIC is roughly a fac-
tor of 3 to 4. The link speed in Hypertransport is negotiated 
between  both devices sharing that link, and is usually set to the 
highest common frequency, so that the HT link between processor 
and FPGA will work without problems, even if the FPGA supports 
only lower link frequencies. However, performance suffers from 
this, which of course is not desirable. It is thus a very important 
issue to implement HyperTransport links in FPGAs with an HT link 
speed that is not significantly lower than the original processor link 
speed.

Another issue is the limited size of FPGAs. [22] found out that 
FPGA designs require a silicon area that is 21 to 40 times higher 
than the respective ASIC implementation. Consequently, our expe-
rience is that even the largest FPGAs available do not privide 
enough space for complete prototypes of complex systems. Rather, 
only parts of the system can be implemented on the FPGA at the 
same time. As the HT core has to be present in almost any case of 
scenarios, it is of particular importance to keep the required area 
consumption as low as possible. 

In this paper, we will describe such an FPGA implementation of a 
fully functional HyperTransport core. It will be used to prototype 
new SAN interfaces currently under development in our group, 
which are based on ideas of and experience with the Atoll SAN 
[16]. The remainder of this paper is organized as follows. Chapter 2 
gives the background about the HyperTransport protocol and how it 
is used in Opteron based systems. Related work is summarized in 
Chapter 3. Details of the implementation are described in Chapter 
4. Results of the FPGA implementation are given in Chapter 5, 
while Chapter 6 describes how the core has been verified in-system. 
Chapter 7 concludes this paper.

2. BACKGROUND
Today, devices within a COTS-system are connected over PCI, PCI-
X, or PCI-Express I/O buses. PCI-Express offers the highest band-
width and thus is currently prevailing among these I/O buses. [5]
shows that the HyperTransport protocol offers significantly lower 
latencies than PCI-Express. This is due to the fact that PCI-Express 
uses a small number of high speed serial lines, instead of a larger 
number of lines with reduced frequencies as HT does. This high-
speed serialization and de-serialization process generates latency 
itself, and additionally requires to recode all transmitted data into a 
DC-free code. Any latency-tolerant application will benefit from 
the reduced bus latency of HT. Nevertheless, the main reduction in 
latency comes from the fact that the HTX slot is directly connected 
to the Opteron processor, instead of having to go through one or 

more I/O bridges, as depicted in Figure 1. This avoids time-con-
suming protocol conversions in these bridges and synchronization 
FIFOs between the different clock domains.

Opteron processors can use up to three HT links for cache-coherent 
communication between different processors in multiprocessor sys-
tems. In this case, they use the cache-coherent HT protocol, which 
is not part of the public HT specification, as it is AMD proprietary 
and confidential. To connect devices or other bridges to the proces-
sor, the respective HT links are configured to be non-coherent and 
thus use the open HyperTransport specification. In this case, the HT 
link within the processor has to translate accesses from the nonco-
herent domain into the coherent domain and vice versa. By doing 
so, every such noncoherent HT link has the functionality of an I/O 
bridge. Due to the similarity of non-coherent and coherent HT pro-
tocols, protocol conversions and synchronizations are less expen-
sive than in other I/O bridges.
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Figure 1:Block diagram of an Opteron dual core proces-
sor in a system with HTX and PCI-X slots 

2.1  The HyperTransport Protocol
HyperTransport (HT) is a packet-based communication protocol for 
data transfer. There are three versions of HyperTransport: HT 1.05 
has been developed in 2001, and was updated by HT 2.0 in 2004. In 
April 2006, HT 3.0 [2] has been defined as the next successor. Cur-
rent Opteron processors adhere the HT 2.0b specification [1], there 
are no HT 3.0 devices or systems available yet. Therefore this work 
focuses on the implementation of an HT 2.0b device. Additionally 
to the HyperTransport specification, [6] defines the precise behav-
iour, and in particular the initialization, of HT devices that are used 
in Opteron based systems.
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A HyperTransport link consists of two sets of unidirectional sig-
nals. Each set can be distinguished into three signal types: CAD 
(command, address, data), CTL (control) and CLK (clock signals). 
The CAD lines are used to transport command and data packets, 
while the CTL line distinguishes between command or data packets 
on the CAD lines. The HT protocol supports CAD buses with a 
width of 2,4,8,16 or 32 bit, as depicted in Table 1. The width of the 
CAD bus is usually called the width of the HT link. If more than 8 
CAD lines are used per link and direction, every group of 8 signals 
has its own CLK signal. These groups of signals are synchronously 
transmitted with the source associated CLK signal. This means that 
one CLK and its associated group of CAD signals must be routed 
with equal length traces in order to minimize skew. The data trans-
ferred on the CAD bus is 32bit aligned, independently of the bus 
width. All transferred packets have at least a size of one double-
word, i.e. 32bit. HT allows frequencies from 200MHz to 1.4GHz in 
HT 2.0 and up to 2.6GHz in HT 3.0. Current Opteron processors 
use link widths of 16 bit and frequencies up to 1GHz. In Opteron 
systems, all devices start at powerup of the system with 200MHz 
and 8bit wide links. The BIOS checks the capabilites of all devices 
by accessing the device’s HT register space, and sets new values for 
frequency and width for every link according to the capabilites of 
the two devices that share the link. After that, it forces a reinitializa-
tion of all HT devices to establish the new parameters.

Table 1: HT link widths

Signal Narrow HTX Wide Description

CLK 1 2 4 Clock signals from 
HT Device 0

CTL 1 1 1 CTL signal from HT 
Device 0

CAD 2,4,8 16 32 Command, Address, 
Data from HT 
Device 0

HyperTransport topologies consists of three different device types, 
which are distinguished by their connection to other HT devices. 
Generally, HyperTransport devices are connected in chains. There 
can be up to 32 devices in one single chain. Different chains can be 
connected with each other by HyperTransport bridges. The top of a 
chain is always a bridge. Caves have a single link and are connected 
to one other device, thus they form the lower end of a HT chain. 
Tunnels have two links and are connected at least with the upstream 
link with one device, or with both links to different devices. HTX 
currently only supports cave devices.

The transfer with HyperTransport is packet based. In order to 
decouple the transmission response from the request, the packets 
are transferred in a split phase transaction. Split phase transactions 
work in a way that the initiator of a transaction sends a request and 
can afterwards continue with other tasks, so that it does not have to 
wait for an immediate response. Then, the receiver of the request 
computes the response and sends it back at a later time. This basic 
function is shown in Figure 2 with the example of a read and write 
operation. A transfer always starts with a control packet. Three 

types of control packets can be distinguished: information, request, 
and response packets. Information packets are used for flow control 
and synchronization. Request packets are sent to write data to a 
receiver, and are also used to initiate requests. Response packets 
contain the answer to a corresponding request. Control packets have 
a size of 4 or 8 bytes or, if they use addresses of 64bits instead of 
40bit addresses, the extended format with a size of 12 bytes. If a 
transfer contains payload data, the next data packet which is sent on 
the link belong to this packet. A data packet can have a maximum 
size of up to 64 bytes. Sending other control packets during a 
stream of data packet at every 32 bit boundary is allowed, but only 
if this control packet would not be followed by data. Otherwise it 
could not be possible to determine which control packet the data 
belongs to. This mechanism makes it possible to send urgent con-
trol packets with priority. 
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Figure 2:Read and Write examples

Packets travel in different virtual channels in order to avoid dead-
locks. Within these channels, all data packets move along with the 
control packets. The virtual channels are classified into three sets: 
Posted Requests, Nonposted Requests, and Responses. Posted 
requests do not get a response packet from the receiver. Non-Posted 
requests always need a response to complete the outstanding trans-
action. However, these sets are not totally independed of each other, 
as there is the option to order Nonposted Requests and Responses 
in relation to Posted Packets on a packet by packet basis.

3. RELATED WORK
In the past, many projects have successfully directly interfaced pro-
cessors for communication [14]. The number of recent projects in 
which FPGAs interface directly to a high-performance processor is 
very limited. One major reason for this is that processor interfaces 
are usually proprietary and thus information about the protocol is 
not available. Recent projects that access the FSB of an processor 
are [17] [18]. In both projects, the FPGA is connected to one slot of 
a dual-processor Pentium-mainboard. The front side bus of the Pen-
tium processor runs with 66MHz, which does not pose technologi-
cal challenges. MemoNet [15] goes a different approach to 
overcome the performance gap of I/O buses. The NIC is connected 
to the SO-DIMM slots of the memory controller. While this 
approach offers higher bandwidths and lower latencies than classi-
cal I/O buses, the NIC can not issue DMA accesses or interrupts. It 
can only act as a slave device, thus, this approach is very limited 
compared to the HTX interface.
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Figure 3:Block Diagram of the Hypertransport Core
To our knowlege, the only paper about an HT implementation on an 
FPGA is [23]. SystemC code of an HT bridge has been synthesized 
to a Xilinx Virtex II Pro FPGA, yielding in a post synthesis HT link 
frequency of 81 MHz. The following place and route steps, which 
usually lead to a significant decrease of the clock frequency, have 
not been performed. The core could not be used or even verified in 
any system, as the minimum HT clock frequency is 200 MHz. The 
HyperTransport Lite Core [21]  from Xilinx is a very rudimentary 
implementation of HyperTransport for FPGA, supporting 8bit links 
with 400MHz link clock. It is not compliant to the HyperTransport 
specification. Just one package type is supported, the other pack-
ages are just ignored. The core is targeted towards Xilinx Virtex-II 
FPGAs, which do not have the serializer blocks that have been used 
to implemented our core. They solve the problem by sampling the 
incoming signals with a number of phase-sifted, slower clocks. 

Several companies have announced HT400 FPGA solutions: Celox-
ica [11] has a HTX based solution, whereas XtremeData’s XD1000 
[12] and  DRC’s RPU-100 [10] connect to the socket 970. However, 
there is no or only few information about the HT cores used in these 
products. Another product, Pathscale’s InfiniPath [20], which sup-
ports HT400 with 16bit wide links, is implemented as an ASIC.

4. THE HYPERTRANSPORT CORE
 The HT core, as depicted in Figure 3, has two different interfaces: 
one are the HT send and receive links, as specified in the HT proto-
col, which can be seen on the left. On the other side, there is the 
application interface, which allows FPGA designs to access the HT 
core. This interface consists of three queues in each direction, one 
for every virtual channel. Applications can access these using a 
valid-stop synchronization mechanism. Control and attached data 
packets can be delivered simultaniously over the 160bit wide inter-
face (96bit to handle extendet control packets, 64bit for data pack-
ets).

Data on an HT link is transmitted at a high clock rate and needs the 
exact alignment with the according clock. Therefore, every 8 bit of 
the CAD lines on the link have their own clock signal, which has to 
be used to sample the CAD lines. As a result, there are two digital 
clock manager (DCM) necessary for 16 bit wide links. However, 
these link clocks cannot be used for the internal core, since clock 
stability is not guaranteed for all the times it is needed, in particular 
during system startup. Therefore, the core clock is generated from 
the HTX reference clock, which is a 200Mhz clock that is stable at 
all times after power up. In this core the number of clock domains 
has been kept at a minimum, thus it needs two clock domains with a 
link width of 8 bits, and three domains with a link width of 16 bit. 
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The HyperTransport-core consists of 10 major submodules, which 
are briefly described in the following. At the interface to the HTX-
connector, there are deserializers at the incoming link and the 
respective serializers at the outgoing link. Both work with a paral-
lelization degree of 4, which means that at HT400, the data coming 
in with 800MT/s can be processed within the core with a clock fre-
quency of 200MHz. An internal clock frequency of 800MHz is cur-
rently impossible in FPGAs. As a result, it is the best way to use 
special purpose SERDES FPGA blocks for this, as logic in the nor-
mal FPGA fabric could hardly do the serialization with this speed. 
Behind the deserializers, the data path has a width of 32bit for each 
of the 8bit CAD words. Closely coupled to the deserializers is the 
bitslip module. During initilisation, an alignment of the 32bit words 
coming out of the deserializers to the 32 bit packet boundaries has 
to be performed. This is provided by the inclusion of the bitslip 
module within in the device. It detects the present offset to the 
boundary and controls the bitslip input of the serializers, which 
shift the data stream bitwise.

Still within the link clock domains, the CRCs are checked. In HT, 
CRCs are periodically sent on each link. They contain the check-
sum of all packets on the bus within the respective timing window. 
CRCs are calculated seperately for every 8bit group in the CAD 
bus. With links that are 8bit wide or larger, the timing window is 
512 bittimes. The CRC has to be inserted exactly 64 bittimes after 
the end of the window. It is not a packet, but only a plain 32bit 
checksum, so it can only be identified by sampling it at the right 
time. The CRC check module performs the check and removes the 
CRC from the data stream to the following FIFO buffer, which is 
used to synchronize the stream into the core clock domain. It is 
important to remove the CRC before the data stream enters the 
FIFO, as this allows the sender to transmit with a clock up to be 1/
512 bittimes faster than the clock on the receiver side without pru-
ducing an overflow in the FIFO.

The decode module distinguishes the different HyperTransport 
packets. When NOP packets arrive, credit information has to be for-
warded to the credit module. Accesses to the HT registers are iden-
tified by an address range check and are forwarded to the init/config 
module. Other packets destined to the address range of the device 
are put into the  adequate virtual channel queue. Packets that are not 
destined to the device are answered with a master abort. Broadcast, 
flushes and fences can be safely ignored within the core. However, 
credits have to be released when these packets are received.

On the packet interface from the HT core to the application, HT 
ordering requirements are currently satisfied by priorizing posted 
packets. This means, that nonposted and response packets are only 
marked valid for the application if the posted queue is empty. This 
is the most efficient solution in terms of hardware complexity. Nev-
ertheless, a more sophisiticated implementation is currently beeing 
planned.

Packets from the application are placed in the incoming buffer. The 
outputgenerator has the task to arbitrate between the three virtual 
channels and any other packets that have to be sent by the core. It 
performs priority arbitration to ensure that packets to be sent imme-
diately are not delayed. CRC packets have the highest priority and 
must be sent at a fixed time slot. They cannot be displaced without a 

link failure. The second highest priority is held by both the 
responses for configuration cycles and the responses with master 
abort error. Buffer space for these packets is limited and not flow 
controlled, so a loss of data could result if they are excessively 
delayed. The packets received from the virtual channel buffers have 
third highest priority. Among the different virtual channels, posted 
packets have the highest priority to fulfill HT ordering requirements 
in this direction. If one of these packets is in process, indicated by a 
set block signal, then it may not be disturbed by packets other than 
the CRC packets. NOP packets have the lowest priority. In order to 
avoid starvation of the sender on the other side of the link, the credit
module can also force to send a NOP packet after the current 
packet. This is done when the remote sender has to few of the free 
local credits. The credit module also keeps track of the remote cred-
its, i.e. the remote buffer status, to let the outputgenerator know on 
which VC packets may be sent.

The init/config module is used for the low level initialization, send-
ing the correct initialization sequence at the beginning. Addition-
ally, the HT configuration registers are located here. From an 
architectural perspective, it would be better to place these registers 
behind the HT core, together with the application’s register space. 
This would simplify the arbiters within the core very much. We 
decided to implement them within the core as this solution is much 
easier to integrate together with application designs.  Low lovel ini-
tialization basically has to set up the link after power up and every 
time a link width or frequency chance should take effect.

5. RESULTS
The Virtex-4 FX 60 FPGA [7] that has been used for implementa-
tion has high-speed in- and outputs that are called SelectIO. In com-
bination with dedicated OSERDES and ISERDES de/serializers 
they support data rates up to 1GT/s in the FPGA. The DCMs of the 
FPGA support the generation of clocks up to 500MHz. As a result, 
these components are the limiting factor regarding the link fre-
quency. They limit it to HT500, which has a 500MHz clock and 
data rates of 1GT/s.  Within the FPGA, higher link frequencies 
could be handled with a higher parallization degree instead of scal-
ing the frequency up. As the Opteron processors do not support 
HT500, we support only HT400 in the implementation. The succes-
sor of the Virtex4, the Virtex5, should allow HT600 given the infor-
mation in the data sheets. However, a verification of this assumption 
is out of the scope of this paper.

Generally, the key to success is not to use any high-speed signals 
directly, but to use only the parallelized data stream. The only 
exception here is the usage of pwrok (power ok), reset and CTL sig-
nals during the initialization phase. The HT protocol defines that 
they hold their values a number of clock cycles before they change 
their values again, so that it is safe to sample them directly, even 
with a very low frequency.

The largest part of the core has been implemented in the Verilog 
hardware description language, and thus can be mapped to any 
device, in particular it could easily be mapped to an ASIC or to 
FPGAs from other vendors. To reach the goal of a low-latency 
design with high link frequencies while at the same time holding 
FPGA resource utilization as small as possible, build-in FPGA 
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blocks have been used whenever possible. Besides the serializers 
and deserializers that have been mentioned above, DCMs have been 
used for clock generation purpuses, and embedded RAM modules 
have been used to implement queues and FIFOs. As a result, the 
ressource requirements of the core, as depicted in Table 2, are rela-
tively moderate. In particular, more than 80% of the logic slices 
can be used to implement applications. If the core is implemented 
to support a link width of 8bit only, the ressource utilization is sig-
nificantly lower. This is due to the fact that the datapaths in the core 
can be reduced to a width of 32bit, compared to 64bit that are 
required for 16bit wide links. As the HT core is still beeing opti-
mized and improved, these numbers may change for future versions 
of the core.

Table 2: 

Ressource 8 bit link 16 bit link

Logic Slices 2,699 10% 4,123 16%

FIFO16/
RAMB16s

30 12% 30 12%

DCM_ADVs 3 25% 4 33%

ISERDESs              10 1% 19 2%

OSERDES 9 2% 17 2%

Resource requirements in a Virtex-4 FX 60 FPGA

The hardware latency of the core is very low, as Table 3 shows. The 
output path has a latency of 7 cycles. The input path of the core has 
a higher latency of 10 clock cycles. This difference is only caused 
by the synchronization FIFO buffer. The Xilinx FIFO core alone 
used in our design consumes 5 of the 11 total clock cycles. The 
respective bidirectional bandwidths with a 16bit link for HT200, 
HT400 and HT500 are 1,6GB/s, 3,2GB/s and 4GB/s.

Table 3: Hardware Latencies of the HT core 

Direction Clock 
Cycles

Delay@ 
HT200

Delay@ 
HT400

Delay@ 
HT500

In 11 55ns 27.5ns 22ns

Out 7 35ns 17.5ns 14ns

Much more important than the pure hardware latency is the access 
latency and bandwidth between software and device. This is a vast 
area of exploration, as a high number of system parameters has an 
influence on the performance. As we just started to analyze and 
optimize the performance in detail, we can just give very first 
results here. Also, for stability reasons, measurements so far have 
been performed using the slowest HT core configuration with 
200MHz and 8 bit wide links only. Measurements have been perfor-
mend in a system with the Iwill DK8-HTX mainboard and two 
Opteron 246 processors.

We measured the latency of processor read accesses to the device. 
These accesses were issued by a primitive device driver under 
Linux 2.6.18. There have been problems to obtain reliable results 
when using the processor clock cycle counter, therefore latency was 
measured on the FPGA device by measuring the time that passes 
between two subsequent read request. This results in a meaningful 
figure, as we observed that read requests are only issued when the 
previous request has been answered by the device. However, it may 
be that this measurment will not return the software-device latency, 
but rather the host bridge-device latency. The measured latency is 
30 HT core clock cycles, which corresponds to 300ns. For read 
accesses, we observed 32 bit read accesses only, and were not able 
to provoke larger reads. This of course implies that larger processor 
reads result in a fairly high latency, as e.g. an 128 bit read is exe-
cuted using 4 individual 32 bit reads, resulting in a latency of 
1200ns. The bandwidth for reads is thus quite low: 100Mb/s. Fur-
ther investigations will have to show wether there is a way to 
improve read performance, and how these values compare to other 
I/O buses like PCIe. In any case, this is an issue of the Opteron sys-
tem or it’s configuration, not of the HT protocol or the HT core.

Writes, in contrast, may have a size of up to 64bytes when write-
combining memory is used. Also, one write may follow the previ-
ous without a gap. As a result, we measured a write bandwidth of 
2.8Gb/s, which is close to the theoretical maximum of the link of 
3.2Gb/s. 

6. VERIFICATION
The HT core has been verified by simulation using an HT bus func-
tional model from AMD. Figure 4 shows a screenshot of the simu-
lation of the low level initialization. To ensure the correct operation 
in a running system, it has been mapped to a newly developed 
FPGA HTX-Board [19]. It contains  an HTX connector and a Vir-
tex-4 FX 60 FPGA which can be programmed via JTAG or USB. 
The HTX-Board can be plugged into any motherboard providing an 
HTX slot, in our case this is the Iwill DK8-HTX dual processor 
Hypertransport-enabled server board. To be able to monitor the 
transmissions on the link, an HTX extender board is used. This 
board enables the user to connect direct probes of a logic state ana-
lyzer, which is a very efficient method for low-level debugging. 
Figure 5 shows the test setup with extender and FPGA boards. At 
the front the HTX-Board is shown. It is plugged into the extender 
board, which has direct probes of an Agilent logic state analyzer 
connected to it. The extender board is again plugged into the HTX 
slot of the Iwill board.

The process of verification can be distinguished into three different 
phases. In the first phase, the HT core has been verified by simula-
tion both in the bus model environment and with low level test-
benches. Here, the correctness of the basic behaviour of the core 
has been verified. This included the initialization sequence, CRC 
insertion, basic packet handling and credit generation. Also, some 
corner cases have been simulated. However, no long-running test-
benches have been run in this phase. We observed that a simulation 
of the HT core with the bus functional model is in the order of 
10,000 times slower than the FPGA system. Thus, longer running 
verification has all been performed in-system.
50



 

deassertion of PWROK

deassertion of RES_N

assertion of CTL

deassertion of CAD and CTL

packet framing event

Figure 4:Low-level initialization in the simulator

In the second phase, the core has been mapped to the FPGA and 
verified in the system. Aim of this phase was to verify the low-level 
initialization sequence and the configuration phase, in which the 
BIOS configures the device using PCI compatible configuration 
cycles. During this phase, the biggest problem turned out to be the 
Iwill’s BIOS. We observed that it does not seem to follow the HT 
specification strictly. Also, it was a problem that we did not have 
the BIOS source code, and thus had to work without the knowledge 
how exactly the BIOS initilizes the HT links and devices. To 
resolve this problem, we ported LinuxBIOS [8] to this mainboard 
and added HTX support for it. Without our comprehensive test 
environment, debugging LinuxBIOS and HT core at the same time 
would have been extremely difficult.

 After the system was successfully booting Linux on top of Linux-
BIOS, the third verification phase could start: the verification with 
user applications. We first implemented a simple register file which 
could be written and read by a basic HTX board Linux kernel 
driver, which has been developed simultaniously. The driver devel-
opment has been very straightforward, as HT is PCI compatible on 
the software layers. In consequence of this, HT devices do not differ 
from PCI or PCI Express devices from the software perspective. As 
a more sophisticated user application, send- and receive units as 
used in NICs have been used. All problems and bugs that appeared 
during in-system verification have been re-enacted in the simulation 
environment. There, the problem has been traced, analyzed, fixed 
and verified by simulation before testing it in-system again.

Summarizing, it can be said that the strategy of very early in-system 
verification clearly proved itself. One reason for this is the 
increased speed of verification, and thus in the end a higher cover-
age and the earlier finding of problems. But the main benefit is the 
early elimination of uncertainties that are always present when the 
implementation can only follow a specification and a very generic 
functional model. These uncertainties can express themselves by a 
violation or different interpretation of the specification by other par-

ties. But there is also the uncertainty of how frequent specific events 
occur. For example, we did not expect to receive a high number of 
FLUSH and FENCE broadcasts during the initialization phase, as 
well as hundreds of read and write packets that were not destined to 
our device. This observation influenced the way how these packets 
are treated within the core.

HTX connection
to the direct
probe extender 
board

programming
interface

connection to
logic state analyzer 
direct probes

Figure 5:In-system verification setup

7. CONCLUSION AND FUTURE WORK
The work presented in this paper is an efficient implementation of 
an HyperTransport 2.0b link. It successfully exploits the potential 
of the used FPGA in terms of bandwidth, latency and resource utili-
zation. Offering an HT400 connection, the HT core can, combined 
with an HTX FPGA board, be used for more than  just prototyping. 
The performance is sufficiently good to serve as a production 
coprocessor board as well. Compared to the link speed between 
Opterons in a multiprocessor environment, which currently support 
HT1000, our HT link provides less than half the bandwidth. How-
ever, the link to our device is free of coherency traffic and remote 
memory accesses from other processors, so that not the same band-
width is required as on the links between processors. The link clock 
frequency scales with the maximum clock speed of the FPGAs. 
Thus, faster links will be possible with higher speed grades of the 
same FPGA, or with faster FPGA families, as the Virtex5 family for 
example. The HT core can also be mapped to an ASIC implementa-
tion by replacing FPGA specifics as DCMs, SERDES and RAM 
blocks with the corresponding ASIC macros.

The HT core is still being optimized, in particular a more efficient 
enforcement of ordering between virtual channels is being worked 
on. Another important task is to analyze the performance of the HT 
core within the Opteron sytem in much more detail, and to tweak 
the sytem to get best performance.
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The HT link presented here is also the foundation for future work in 
this area by our group. Currently, an HT crossbar switch is under 
development, which allows to connect multiple functional units or 
devices within the FPGA to the HT core. It may also be an option to 
connect several HT cores with this switch, thus creating an HT-to-
HT bridge device. With support from AMD, other development 
efforts concentrate to add support for the cache-coherent HT proto-
col to the core, which will add the possibility to construct cache 
coherent devices within the FPGA. We will also continue to main-
tain the core, which is freely available for download [13].
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