
A Versatile, Low Latency HyperTransport Core

David Slogsnat Alexander Giese Ulrich Brüning

University of Mannheim
Computer Architecture Group

B6 26
68131 Mannheim

Germany
{slogsnat,agiese,bruening}@uni-mannheim.de
1. INTRODUCTION
Cluster computing is becoming an increasingly important and pop-
ular trend in high performance computing. Current state of the art in
cluster computing is to use commodity computing nodes and add-
ing communication devices like Myrinet, Infiniband or Quadrics.
This approach replaces the standard interconnect, which is the least
performing component in those systems, by a high performance
System Area Network (SAN). The result is a significant speedup of
the parallel system. At the same time, it enables low system costs
through the use of COTS (Components off the shelf) for most parts
of the system. Within the last decade, much effort has been spent in
the development and improvement of SANs. With success: routing
mechanisms and chip fall-through latencies have improved steadily.
Additional functional features like embedded processors, user-level
communication, memory management units and support for fre-
quent parallel communication patters have been added. As a result,
today’s SANs are very mature and highly optimized devices.

Nevertheless, such systems have a serious weakness: computing
and communication resources are only loosely coupled over a hier-
archy of buses, with the bottleneck being a high-latency, non-cache
coherent I/O bus. Currently, PCI-X and PCI Express are commonly
used for that. One of the implications is that a large fraction of the
end-to-end message latency in modern SANs is introduced by the I/
O bus. Latency is however one of the most critical performance cri-
teria of SANs. Thus, the efficient fusion of computing and commu-
nication into a scalable network of computers constructed from
basic building blocks is still an unreached goal. To overcome this
limitation, computation and communication resources have to move
much closer to each other.

AMD’s Opteron processors offer a unique opportunity to do so, as
they do not use a proprietary front side bus, but 3 HyperTransport
interfaces per processor. The adoption of the HyperTransport
Expansion Connector (HTX) specification [3] and mainboards that
are equipped with this connector now make it possible to directly
connect devices to an Opteron processor. This results in a major
increase of performance [4], which also can be seen in practice with

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee.
FPGA’07, February 18–20, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-600-4/07/0002...$5.00.

ABSTRACT
This paper presents the design of a generic HyperTransport (HT)
core. It is specially optimized to achieve a very low latency. The
core has been verified in system using the rapid prototyping meth-
odology with FPGAs. This exhaustive verification and the generic
design allows the mapping to both ASICs and FPGAs. The imple-
mentation described in this paper supports a link width of 16bit, as
is used in Opteron based systems. On a Xilinx Virtex4FX60, the
core supports a link frequency of 400MHz DDR and offers a maxi-
mum bidirectional bandwidth of 3.6 GB/s. The in-system verifica-
tion has been performed using a custom FPGA board that has been
plugged into a HyperTransport Extension Connector (HTX) of a
standard Opteron based mainboard. HTX slots in Opteron based
mainboards allow a very high-bandwidth, low latency communica-
tion, as the HTX device is directly connected to one of the Hyper-
Transport links of the processor. HyperTransport is a packet-based
interconnect technology for low-latency, high-bandwidth point-to-
point connections. The HT core in combination with the HTX
board is an ideal base for prototyping systems and FPGA coproces-
sors. The HT core is available as open source.

Categories and Subject Descriptors
B.4.3 [Hardware]: Interconnections (Subsytems) - Interfaces

General Terms
Design, Verification

Keywords
FPGA, HyperTransport, HTX, Prototyping, RTL
45

Pathscale’s InfiniPath, currently the only HyperTransport-enabled
NIC. Of course, not only NICs benefit from the direct HyperTrans-
port connection. Any device with high bandwidth or latency
requirements, as FPGA coprocessors for example, will gain from
the increased performance.

A very challenging task appears when FPGAs are used to interface
the HT link of the Opteron processor, no matter if it is used for pro-
totyping or in a production system. Current Opteron processors use
Hypertransport link speeds of 1GHz DDR, a value which will very
likely increase steadily over time. [22] found out that the gap in crit-
ical path delay from FPGA to a standard-cell ASIC is roughly a fac-
tor of 3 to 4. The link speed in Hypertransport is negotiated
between both devices sharing that link, and is usually set to the
highest common frequency, so that the HT link between processor
and FPGA will work without problems, even if the FPGA supports
only lower link frequencies. However, performance suffers from
this, which of course is not desirable. It is thus a very important
issue to implement HyperTransport links in FPGAs with an HT link
speed that is not significantly lower than the original processor link
speed.

Another issue is the limited size of FPGAs. [22] found out that
FPGA designs require a silicon area that is 21 to 40 times higher
than the respective ASIC implementation. Consequently, our expe-
rience is that even the largest FPGAs available do not privide
enough space for complete prototypes of complex systems. Rather,
only parts of the system can be implemented on the FPGA at the
same time. As the HT core has to be present in almost any case of
scenarios, it is of particular importance to keep the required area
consumption as low as possible.

In this paper, we will describe such an FPGA implementation of a
fully functional HyperTransport core. It will be used to prototype
new SAN interfaces currently under development in our group,
which are based on ideas of and experience with the Atoll SAN
[16]. The remainder of this paper is organized as follows. Chapter 2
gives the background about the HyperTransport protocol and how it
is used in Opteron based systems. Related work is summarized in
Chapter 3. Details of the implementation are described in Chapter
4. Results of the FPGA implementation are given in Chapter 5,
while Chapter 6 describes how the core has been verified in-system.
Chapter 7 concludes this paper.

2. BACKGROUND
Today, devices within a COTS-system are connected over PCI, PCI-
X, or PCI-Express I/O buses. PCI-Express offers the highest band-
width and thus is currently prevailing among these I/O buses. [5]
shows that the HyperTransport protocol offers significantly lower
latencies than PCI-Express. This is due to the fact that PCI-Express
uses a small number of high speed serial lines, instead of a larger
number of lines with reduced frequencies as HT does. This high-
speed serialization and de-serialization process generates latency
itself, and additionally requires to recode all transmitted data into a
DC-free code. Any latency-tolerant application will benefit from
the reduced bus latency of HT. Nevertheless, the main reduction in
latency comes from the fact that the HTX slot is directly connected
to the Opteron processor, instead of having to go through one or

more I/O bridges, as depicted in Figure 1. This avoids time-con-
suming protocol conversions in these bridges and synchronization
FIFOs between the different clock domains.

Opteron processors can use up to three HT links for cache-coherent
communication between different processors in multiprocessor sys-
tems. In this case, they use the cache-coherent HT protocol, which
is not part of the public HT specification, as it is AMD proprietary
and confidential. To connect devices or other bridges to the proces-
sor, the respective HT links are configured to be non-coherent and
thus use the open HyperTransport specification. In this case, the HT
link within the processor has to translate accesses from the nonco-
herent domain into the coherent domain and vice versa. By doing
so, every such noncoherent HT link has the functionality of an I/O
bridge. Due to the similarity of non-coherent and coherent HT pro-
tocols, protocol conversions and synchronizations are less expen-
sive than in other I/O bridges.

AMD Dual Opteron processor

memory controller

AMD64
CPU core

Hypertransport

L1 I
cache

L1 D
cache

L2 cache

AMD64
CPU core

L1 I
cache

L1 D
cache

L2 cache

System Request Queue

Crossbar

Memory

I/O

Bridge PCI-XHTX

Figure 1:Block diagram of an Opteron dual core proces-
sor in a system with HTX and PCI-X slots

2.1 The HyperTransport Protocol
HyperTransport (HT) is a packet-based communication protocol for
data transfer. There are three versions of HyperTransport: HT 1.05
has been developed in 2001, and was updated by HT 2.0 in 2004. In
April 2006, HT 3.0 [2] has been defined as the next successor. Cur-
rent Opteron processors adhere the HT 2.0b specification [1], there
are no HT 3.0 devices or systems available yet. Therefore this work
focuses on the implementation of an HT 2.0b device. Additionally
to the HyperTransport specification, [6] defines the precise behav-
iour, and in particular the initialization, of HT devices that are used
in Opteron based systems.
46

A HyperTransport link consists of two sets of unidirectional sig-
nals. Each set can be distinguished into three signal types: CAD
(command, address, data), CTL (control) and CLK (clock signals).
The CAD lines are used to transport command and data packets,
while the CTL line distinguishes between command or data packets
on the CAD lines. The HT protocol supports CAD buses with a
width of 2,4,8,16 or 32 bit, as depicted in Table 1. The width of the
CAD bus is usually called the width of the HT link. If more than 8
CAD lines are used per link and direction, every group of 8 signals
has its own CLK signal. These groups of signals are synchronously
transmitted with the source associated CLK signal. This means that
one CLK and its associated group of CAD signals must be routed
with equal length traces in order to minimize skew. The data trans-
ferred on the CAD bus is 32bit aligned, independently of the bus
width. All transferred packets have at least a size of one double-
word, i.e. 32bit. HT allows frequencies from 200MHz to 1.4GHz in
HT 2.0 and up to 2.6GHz in HT 3.0. Current Opteron processors
use link widths of 16 bit and frequencies up to 1GHz. In Opteron
systems, all devices start at powerup of the system with 200MHz
and 8bit wide links. The BIOS checks the capabilites of all devices
by accessing the device’s HT register space, and sets new values for
frequency and width for every link according to the capabilites of
the two devices that share the link. After that, it forces a reinitializa-
tion of all HT devices to establish the new parameters.

Table 1: HT link widths

Signal Narrow HTX Wide Description

CLK 1 2 4 Clock signals from
HT Device 0

CTL 1 1 1 CTL signal from HT
Device 0

CAD 2,4,8 16 32 Command, Address,
Data from HT
Device 0

HyperTransport topologies consists of three different device types,
which are distinguished by their connection to other HT devices.
Generally, HyperTransport devices are connected in chains. There
can be up to 32 devices in one single chain. Different chains can be
connected with each other by HyperTransport bridges. The top of a
chain is always a bridge. Caves have a single link and are connected
to one other device, thus they form the lower end of a HT chain.
Tunnels have two links and are connected at least with the upstream
link with one device, or with both links to different devices. HTX
currently only supports cave devices.

The transfer with HyperTransport is packet based. In order to
decouple the transmission response from the request, the packets
are transferred in a split phase transaction. Split phase transactions
work in a way that the initiator of a transaction sends a request and
can afterwards continue with other tasks, so that it does not have to
wait for an immediate response. Then, the receiver of the request
computes the response and sends it back at a later time. This basic
function is shown in Figure 2 with the example of a read and write
operation. A transfer always starts with a control packet. Three

types of control packets can be distinguished: information, request,
and response packets. Information packets are used for flow control
and synchronization. Request packets are sent to write data to a
receiver, and are also used to initiate requests. Response packets
contain the answer to a corresponding request. Control packets have
a size of 4 or 8 bytes or, if they use addresses of 64bits instead of
40bit addresses, the extended format with a size of 12 bytes. If a
transfer contains payload data, the next data packet which is sent on
the link belong to this packet. A data packet can have a maximum
size of up to 64 bytes. Sending other control packets during a
stream of data packet at every 32 bit boundary is allowed, but only
if this control packet would not be followed by data. Otherwise it
could not be possible to determine which control packet the data
belongs to. This mechanism makes it possible to send urgent con-
trol packets with priority.

HT Requester

Read Request:

Time to proc-
ess request

}

Write Request:

Time to proc-
ess request

HT Target

HT Requester HT Target

HT Requester HT Target

HT Requester HT Target

}Response Packet Data Packet

Request Packet

Data Packet

Response Packet

Request Packet

Figure 2:Read and Write examples

Packets travel in different virtual channels in order to avoid dead-
locks. Within these channels, all data packets move along with the
control packets. The virtual channels are classified into three sets:
Posted Requests, Nonposted Requests, and Responses. Posted
requests do not get a response packet from the receiver. Non-Posted
requests always need a response to complete the outstanding trans-
action. However, these sets are not totally independed of each other,
as there is the option to order Nonposted Requests and Responses
in relation to Posted Packets on a packet by packet basis.

3. RELATED WORK
In the past, many projects have successfully directly interfaced pro-
cessors for communication [14]. The number of recent projects in
which FPGAs interface directly to a high-performance processor is
very limited. One major reason for this is that processor interfaces
are usually proprietary and thus information about the protocol is
not available. Recent projects that access the FSB of an processor
are [17] [18]. In both projects, the FPGA is connected to one slot of
a dual-processor Pentium-mainboard. The front side bus of the Pen-
tium processor runs with 66MHz, which does not pose technologi-
cal challenges. MemoNet [15] goes a different approach to
overcome the performance gap of I/O buses. The NIC is connected
to the SO-DIMM slots of the memory controller. While this
approach offers higher bandwidths and lower latencies than classi-
cal I/O buses, the NIC can not issue DMA accesses or interrupts. It
can only act as a slave device, thus, this approach is very limited
compared to the HTX interface.
47

ISERDES SYNC
REORDER

HT_CLK_U

REFCLK

OSERDES

CREDIT

INIT

CRC

CONFIG

DECODE
BUFFER

OUTPUTGEN

GEN

BUFFER

16

2

CAD_L32

CTL

WR_EN

CTLFAST

32CAD_U
CTL

VALID_U

6

SHIFTOUT

8SHIFTIN

CTRL 96

18

REL_EN

CREDIT_FREE

CREDIT REMOTE

DATA

CMD

12

6

64

96

ENABLE

CRC
64

INIT_IN

INIT_OUT

TYPE

RESPONSE

3

64

BYTE
READ
WRITE

16

2

CAD_INIT

CTL_INIT

CAD

CTL

CRC CHECK

4

4

3x

64

4

32

4

64

4

PWROK
RESET_N

CAD
CTL

HTCLK

CAD

CTL

HTCLK

CAD_U32

HT_CLK_L

BITSLIP

RELEASE

UPPER

UPPER

SYNC
REORDER
LOWER

32CAD_L

VALID_L
WR_EN

CRC CHECK
LOWER

BS

RCLK

RCLK
DB4

CORE_CLK

LINK_FREQ

DEC
UPPER

DEC
LOWER

LINK_WIDTH

STOP_OUT

DATA 64

DIR_CONF 7

CONFIG

ERROR

NP/P/R

IGNORE_C

IGNORE_D

6SHIFTOUT

6 EMPTY

NP_C
P_C

R_C
NP_D

P_D

R_D

NP_C
P_C

R_C
NP_D

P_D

R_D

96

96

96

96

96

96

64

64

64

64

64

64

REFCLK

SHIFT_CONF 7

Figure 3:Block Diagram of the Hypertransport Core
To our knowlege, the only paper about an HT implementation on an
FPGA is [23]. SystemC code of an HT bridge has been synthesized
to a Xilinx Virtex II Pro FPGA, yielding in a post synthesis HT link
frequency of 81 MHz. The following place and route steps, which
usually lead to a significant decrease of the clock frequency, have
not been performed. The core could not be used or even verified in
any system, as the minimum HT clock frequency is 200 MHz. The
HyperTransport Lite Core [21] from Xilinx is a very rudimentary
implementation of HyperTransport for FPGA, supporting 8bit links
with 400MHz link clock. It is not compliant to the HyperTransport
specification. Just one package type is supported, the other pack-
ages are just ignored. The core is targeted towards Xilinx Virtex-II
FPGAs, which do not have the serializer blocks that have been used
to implemented our core. They solve the problem by sampling the
incoming signals with a number of phase-sifted, slower clocks.

Several companies have announced HT400 FPGA solutions: Celox-
ica [11] has a HTX based solution, whereas XtremeData’s XD1000
[12] and DRC’s RPU-100 [10] connect to the socket 970. However,
there is no or only few information about the HT cores used in these
products. Another product, Pathscale’s InfiniPath [20], which sup-
ports HT400 with 16bit wide links, is implemented as an ASIC.

4. THE HYPERTRANSPORT CORE
 The HT core, as depicted in Figure 3, has two different interfaces:
one are the HT send and receive links, as specified in the HT proto-
col, which can be seen on the left. On the other side, there is the
application interface, which allows FPGA designs to access the HT
core. This interface consists of three queues in each direction, one
for every virtual channel. Applications can access these using a
valid-stop synchronization mechanism. Control and attached data
packets can be delivered simultaniously over the 160bit wide inter-
face (96bit to handle extendet control packets, 64bit for data pack-
ets).

Data on an HT link is transmitted at a high clock rate and needs the
exact alignment with the according clock. Therefore, every 8 bit of
the CAD lines on the link have their own clock signal, which has to
be used to sample the CAD lines. As a result, there are two digital
clock manager (DCM) necessary for 16 bit wide links. However,
these link clocks cannot be used for the internal core, since clock
stability is not guaranteed for all the times it is needed, in particular
during system startup. Therefore, the core clock is generated from
the HTX reference clock, which is a 200Mhz clock that is stable at
all times after power up. In this core the number of clock domains
has been kept at a minimum, thus it needs two clock domains with a
link width of 8 bits, and three domains with a link width of 16 bit.
48

The HyperTransport-core consists of 10 major submodules, which
are briefly described in the following. At the interface to the HTX-
connector, there are deserializers at the incoming link and the
respective serializers at the outgoing link. Both work with a paral-
lelization degree of 4, which means that at HT400, the data coming
in with 800MT/s can be processed within the core with a clock fre-
quency of 200MHz. An internal clock frequency of 800MHz is cur-
rently impossible in FPGAs. As a result, it is the best way to use
special purpose SERDES FPGA blocks for this, as logic in the nor-
mal FPGA fabric could hardly do the serialization with this speed.
Behind the deserializers, the data path has a width of 32bit for each
of the 8bit CAD words. Closely coupled to the deserializers is the
bitslip module. During initilisation, an alignment of the 32bit words
coming out of the deserializers to the 32 bit packet boundaries has
to be performed. This is provided by the inclusion of the bitslip
module within in the device. It detects the present offset to the
boundary and controls the bitslip input of the serializers, which
shift the data stream bitwise.

Still within the link clock domains, the CRCs are checked. In HT,
CRCs are periodically sent on each link. They contain the check-
sum of all packets on the bus within the respective timing window.
CRCs are calculated seperately for every 8bit group in the CAD
bus. With links that are 8bit wide or larger, the timing window is
512 bittimes. The CRC has to be inserted exactly 64 bittimes after
the end of the window. It is not a packet, but only a plain 32bit
checksum, so it can only be identified by sampling it at the right
time. The CRC check module performs the check and removes the
CRC from the data stream to the following FIFO buffer, which is
used to synchronize the stream into the core clock domain. It is
important to remove the CRC before the data stream enters the
FIFO, as this allows the sender to transmit with a clock up to be 1/
512 bittimes faster than the clock on the receiver side without pru-
ducing an overflow in the FIFO.

The decode module distinguishes the different HyperTransport
packets. When NOP packets arrive, credit information has to be for-
warded to the credit module. Accesses to the HT registers are iden-
tified by an address range check and are forwarded to the init/config
module. Other packets destined to the address range of the device
are put into the adequate virtual channel queue. Packets that are not
destined to the device are answered with a master abort. Broadcast,
flushes and fences can be safely ignored within the core. However,
credits have to be released when these packets are received.

On the packet interface from the HT core to the application, HT
ordering requirements are currently satisfied by priorizing posted
packets. This means, that nonposted and response packets are only
marked valid for the application if the posted queue is empty. This
is the most efficient solution in terms of hardware complexity. Nev-
ertheless, a more sophisiticated implementation is currently beeing
planned.

Packets from the application are placed in the incoming buffer. The
outputgenerator has the task to arbitrate between the three virtual
channels and any other packets that have to be sent by the core. It
performs priority arbitration to ensure that packets to be sent imme-
diately are not delayed. CRC packets have the highest priority and
must be sent at a fixed time slot. They cannot be displaced without a

link failure. The second highest priority is held by both the
responses for configuration cycles and the responses with master
abort error. Buffer space for these packets is limited and not flow
controlled, so a loss of data could result if they are excessively
delayed. The packets received from the virtual channel buffers have
third highest priority. Among the different virtual channels, posted
packets have the highest priority to fulfill HT ordering requirements
in this direction. If one of these packets is in process, indicated by a
set block signal, then it may not be disturbed by packets other than
the CRC packets. NOP packets have the lowest priority. In order to
avoid starvation of the sender on the other side of the link, the credit
module can also force to send a NOP packet after the current
packet. This is done when the remote sender has to few of the free
local credits. The credit module also keeps track of the remote cred-
its, i.e. the remote buffer status, to let the outputgenerator know on
which VC packets may be sent.

The init/config module is used for the low level initialization, send-
ing the correct initialization sequence at the beginning. Addition-
ally, the HT configuration registers are located here. From an
architectural perspective, it would be better to place these registers
behind the HT core, together with the application’s register space.
This would simplify the arbiters within the core very much. We
decided to implement them within the core as this solution is much
easier to integrate together with application designs. Low lovel ini-
tialization basically has to set up the link after power up and every
time a link width or frequency chance should take effect.

5. RESULTS
The Virtex-4 FX 60 FPGA [7] that has been used for implementa-
tion has high-speed in- and outputs that are called SelectIO. In com-
bination with dedicated OSERDES and ISERDES de/serializers
they support data rates up to 1GT/s in the FPGA. The DCMs of the
FPGA support the generation of clocks up to 500MHz. As a result,
these components are the limiting factor regarding the link fre-
quency. They limit it to HT500, which has a 500MHz clock and
data rates of 1GT/s. Within the FPGA, higher link frequencies
could be handled with a higher parallization degree instead of scal-
ing the frequency up. As the Opteron processors do not support
HT500, we support only HT400 in the implementation. The succes-
sor of the Virtex4, the Virtex5, should allow HT600 given the infor-
mation in the data sheets. However, a verification of this assumption
is out of the scope of this paper.

Generally, the key to success is not to use any high-speed signals
directly, but to use only the parallelized data stream. The only
exception here is the usage of pwrok (power ok), reset and CTL sig-
nals during the initialization phase. The HT protocol defines that
they hold their values a number of clock cycles before they change
their values again, so that it is safe to sample them directly, even
with a very low frequency.

The largest part of the core has been implemented in the Verilog
hardware description language, and thus can be mapped to any
device, in particular it could easily be mapped to an ASIC or to
FPGAs from other vendors. To reach the goal of a low-latency
design with high link frequencies while at the same time holding
FPGA resource utilization as small as possible, build-in FPGA
49

blocks have been used whenever possible. Besides the serializers
and deserializers that have been mentioned above, DCMs have been
used for clock generation purpuses, and embedded RAM modules
have been used to implement queues and FIFOs. As a result, the
ressource requirements of the core, as depicted in Table 2, are rela-
tively moderate. In particular, more than 80% of the logic slices
can be used to implement applications. If the core is implemented
to support a link width of 8bit only, the ressource utilization is sig-
nificantly lower. This is due to the fact that the datapaths in the core
can be reduced to a width of 32bit, compared to 64bit that are
required for 16bit wide links. As the HT core is still beeing opti-
mized and improved, these numbers may change for future versions
of the core.

Table 2:

Ressource 8 bit link 16 bit link

Logic Slices 2,699 10% 4,123 16%

FIFO16/
RAMB16s

30 12% 30 12%

DCM_ADVs 3 25% 4 33%

ISERDESs 10 1% 19 2%

OSERDES 9 2% 17 2%

Resource requirements in a Virtex-4 FX 60 FPGA

The hardware latency of the core is very low, as Table 3 shows. The
output path has a latency of 7 cycles. The input path of the core has
a higher latency of 10 clock cycles. This difference is only caused
by the synchronization FIFO buffer. The Xilinx FIFO core alone
used in our design consumes 5 of the 11 total clock cycles. The
respective bidirectional bandwidths with a 16bit link for HT200,
HT400 and HT500 are 1,6GB/s, 3,2GB/s and 4GB/s.

Table 3: Hardware Latencies of the HT core

Direction Clock
Cycles

Delay@
HT200

Delay@
HT400

Delay@
HT500

In 11 55ns 27.5ns 22ns

Out 7 35ns 17.5ns 14ns

Much more important than the pure hardware latency is the access
latency and bandwidth between software and device. This is a vast
area of exploration, as a high number of system parameters has an
influence on the performance. As we just started to analyze and
optimize the performance in detail, we can just give very first
results here. Also, for stability reasons, measurements so far have
been performed using the slowest HT core configuration with
200MHz and 8 bit wide links only. Measurements have been perfor-
mend in a system with the Iwill DK8-HTX mainboard and two
Opteron 246 processors.

We measured the latency of processor read accesses to the device.
These accesses were issued by a primitive device driver under
Linux 2.6.18. There have been problems to obtain reliable results
when using the processor clock cycle counter, therefore latency was
measured on the FPGA device by measuring the time that passes
between two subsequent read request. This results in a meaningful
figure, as we observed that read requests are only issued when the
previous request has been answered by the device. However, it may
be that this measurment will not return the software-device latency,
but rather the host bridge-device latency. The measured latency is
30 HT core clock cycles, which corresponds to 300ns. For read
accesses, we observed 32 bit read accesses only, and were not able
to provoke larger reads. This of course implies that larger processor
reads result in a fairly high latency, as e.g. an 128 bit read is exe-
cuted using 4 individual 32 bit reads, resulting in a latency of
1200ns. The bandwidth for reads is thus quite low: 100Mb/s. Fur-
ther investigations will have to show wether there is a way to
improve read performance, and how these values compare to other
I/O buses like PCIe. In any case, this is an issue of the Opteron sys-
tem or it’s configuration, not of the HT protocol or the HT core.

Writes, in contrast, may have a size of up to 64bytes when write-
combining memory is used. Also, one write may follow the previ-
ous without a gap. As a result, we measured a write bandwidth of
2.8Gb/s, which is close to the theoretical maximum of the link of
3.2Gb/s.

6. VERIFICATION
The HT core has been verified by simulation using an HT bus func-
tional model from AMD. Figure 4 shows a screenshot of the simu-
lation of the low level initialization. To ensure the correct operation
in a running system, it has been mapped to a newly developed
FPGA HTX-Board [19]. It contains an HTX connector and a Vir-
tex-4 FX 60 FPGA which can be programmed via JTAG or USB.
The HTX-Board can be plugged into any motherboard providing an
HTX slot, in our case this is the Iwill DK8-HTX dual processor
Hypertransport-enabled server board. To be able to monitor the
transmissions on the link, an HTX extender board is used. This
board enables the user to connect direct probes of a logic state ana-
lyzer, which is a very efficient method for low-level debugging.
Figure 5 shows the test setup with extender and FPGA boards. At
the front the HTX-Board is shown. It is plugged into the extender
board, which has direct probes of an Agilent logic state analyzer
connected to it. The extender board is again plugged into the HTX
slot of the Iwill board.

The process of verification can be distinguished into three different
phases. In the first phase, the HT core has been verified by simula-
tion both in the bus model environment and with low level test-
benches. Here, the correctness of the basic behaviour of the core
has been verified. This included the initialization sequence, CRC
insertion, basic packet handling and credit generation. Also, some
corner cases have been simulated. However, no long-running test-
benches have been run in this phase. We observed that a simulation
of the HT core with the bus functional model is in the order of
10,000 times slower than the FPGA system. Thus, longer running
verification has all been performed in-system.
50

deassertion of PWROK

deassertion of RES_N

assertion of CTL

deassertion of CAD and CTL

packet framing event

Figure 4:Low-level initialization in the simulator

In the second phase, the core has been mapped to the FPGA and
verified in the system. Aim of this phase was to verify the low-level
initialization sequence and the configuration phase, in which the
BIOS configures the device using PCI compatible configuration
cycles. During this phase, the biggest problem turned out to be the
Iwill’s BIOS. We observed that it does not seem to follow the HT
specification strictly. Also, it was a problem that we did not have
the BIOS source code, and thus had to work without the knowledge
how exactly the BIOS initilizes the HT links and devices. To
resolve this problem, we ported LinuxBIOS [8] to this mainboard
and added HTX support for it. Without our comprehensive test
environment, debugging LinuxBIOS and HT core at the same time
would have been extremely difficult.

 After the system was successfully booting Linux on top of Linux-
BIOS, the third verification phase could start: the verification with
user applications. We first implemented a simple register file which
could be written and read by a basic HTX board Linux kernel
driver, which has been developed simultaniously. The driver devel-
opment has been very straightforward, as HT is PCI compatible on
the software layers. In consequence of this, HT devices do not differ
from PCI or PCI Express devices from the software perspective. As
a more sophisticated user application, send- and receive units as
used in NICs have been used. All problems and bugs that appeared
during in-system verification have been re-enacted in the simulation
environment. There, the problem has been traced, analyzed, fixed
and verified by simulation before testing it in-system again.

Summarizing, it can be said that the strategy of very early in-system
verification clearly proved itself. One reason for this is the
increased speed of verification, and thus in the end a higher cover-
age and the earlier finding of problems. But the main benefit is the
early elimination of uncertainties that are always present when the
implementation can only follow a specification and a very generic
functional model. These uncertainties can express themselves by a
violation or different interpretation of the specification by other par-

ties. But there is also the uncertainty of how frequent specific events
occur. For example, we did not expect to receive a high number of
FLUSH and FENCE broadcasts during the initialization phase, as
well as hundreds of read and write packets that were not destined to
our device. This observation influenced the way how these packets
are treated within the core.

HTX connection
to the direct
probe extender
board

programming
interface

connection to
logic state analyzer
direct probes

Figure 5:In-system verification setup

7. CONCLUSION AND FUTURE WORK
The work presented in this paper is an efficient implementation of
an HyperTransport 2.0b link. It successfully exploits the potential
of the used FPGA in terms of bandwidth, latency and resource utili-
zation. Offering an HT400 connection, the HT core can, combined
with an HTX FPGA board, be used for more than just prototyping.
The performance is sufficiently good to serve as a production
coprocessor board as well. Compared to the link speed between
Opterons in a multiprocessor environment, which currently support
HT1000, our HT link provides less than half the bandwidth. How-
ever, the link to our device is free of coherency traffic and remote
memory accesses from other processors, so that not the same band-
width is required as on the links between processors. The link clock
frequency scales with the maximum clock speed of the FPGAs.
Thus, faster links will be possible with higher speed grades of the
same FPGA, or with faster FPGA families, as the Virtex5 family for
example. The HT core can also be mapped to an ASIC implementa-
tion by replacing FPGA specifics as DCMs, SERDES and RAM
blocks with the corresponding ASIC macros.

The HT core is still being optimized, in particular a more efficient
enforcement of ordering between virtual channels is being worked
on. Another important task is to analyze the performance of the HT
core within the Opteron sytem in much more detail, and to tweak
the sytem to get best performance.
51

The HT link presented here is also the foundation for future work in
this area by our group. Currently, an HT crossbar switch is under
development, which allows to connect multiple functional units or
devices within the FPGA to the HT core. It may also be an option to
connect several HT cores with this switch, thus creating an HT-to-
HT bridge device. With support from AMD, other development
efforts concentrate to add support for the cache-coherent HT proto-
col to the core, which will add the possibility to construct cache
coherent devices within the FPGA. We will also continue to main-
tain the core, which is freely available for download [13].

8. ACKNOWLEDGEMENTS
Special thanks go to Jay Owens, Rich Oehler, Michael Goddard,
Dan Mudgett and Doug O’Flaherty from AMD for their support,
and in particular for the financial aid which allows us to continue to
maintain the HT core.

This project has been strongly supported by the highly engaged
team of the Computer Architecture Group and their students at the
University of Mannheim.

9. REFERENCES
[1] Hypertransport Technology Consortium, Hypertransport I/O

Link Specification Revision 2.00b, Document #HTC20031217-
0036-0009, 2005

[2] Hypertransport Technology Consortium, Hypertransport I/O
Link Specification Revision 3.00, Document #HTC20051222-
0046-0008, 2006

[3] Hypertransport Consortium, HyperTransport EATX Mother-
board/Daughtercard Specification, www.hypertransport.org,
2004

[4] Hypertransport Consortium, The Future of High Performance
Computing: Direct Low Latency Peripheral-to-CPU Connec-
tions, www.hypertransport.org, November 2005.

[5] Duncan Bees, Brian Holden, HyperTransport reduces delays in
some applications, EETimes 2004

[6] Advanced Micro Devices, AMD BIOS and Kernel Developer's
Guide for the AMD Athlon 64 and AMD Opteron Processors,
#26094, Rev 3.3, 2006

[7] Xilinx Corporation, Virtex-4 User Guide, Document ug070
v1.5, www.xilinx.com, 2006

[8] LinuxBIOS, http://www.linuxbios.org

[9] The HyperTransport Consortium, http://www.hypertrans-
port.org/

[10] DRC RPU100-L60 Datasheet, www.drccomputer.com/pdfs/
DRC_RPU100_datasheet.pdf

[11] Celoxica RCHTX-XV4 Datasheet, http://www.celoxica.com/
techlib/files/CEL-W06112119BY-517.pdf

[12] XtremeData XD1000 Product Brief, http://www.xtremeda-
tainc.com/pdf/XD1000_Brief.pdf

[13] Center of Excellence on research in HyperTransport technolo-
gy. Website: http://www.ra.informatik.uni-mannheim.de/coe-
ht/

[14] Kai Hwang, Zhiwei Xu, Scalable Parallel Computing, 1st Edi-
tion, McGraw-Hill, 1998.

[15] Noboru Tanabe, Junji Yamamoto, Hiroaki Nishi, Tomohiro
Kudoh, Yoshihiro Hamada, Hironori Nakajo, Hideharu
Amano, MEMOnet : Network interface plugged into a memory
slot, IEEE International Conference on Cluster Computing , p.
17, 2000.

[16] Holger Fröning, Mondrian Nüssle, David Slogsnat, Patrick R.
Haspel, Ulrich Brüning, Performance Evaluation of the ATOLL
Interconnect, IASTED Conference: Parallel and Distributed
Computing and Networks (PDCN) , Feb. 15 - 17, 2005, Inns-
bruck, Austria

[17] Jumnit Hong, Eriko Nurvitadhi, Shih-Lien L. Lu, Design, im-
plementation, and verification of active cache emulator (ACE)
, Proceedings of the internation symposium on Field program-
mable gate arrays, Monterey, California, USA, 63-72, 2006

[18] Taeweon Suh, Hsien-Hsin S. Lee, Shih-Lien Lu, John Shen, In-
itial Observations of Hardware/Software Co-Simulation using
FPGA in Architecture Research, 2nd Workshop on Architec-
ture Research using FPGA Platforms, Austin, 2006

[19] ,Holger Fröning, Mondrian Nüssle, David Slogsnat, Heiner
Litz, Ulrich Brüning, The HTX-Board: A Rapid Prototyping
Station, 3rd annual FPGAWorld Conference, Nov. 16, 2006,
Stockholm, Sweden

[20] Dickman, L. Lindahl, G. Olson, D. Rubin, J. Broughton, J.
, Pathscale InfiniPath: a first look, 13th Symposium on High
Performance Interconnects, 2005. Proceedings.

[21] HyperTransport Lite Interface for Virtex-II FPGAs; XILINX;
Document # 1-800-255-7778; 31.03.2004, http://www.xil-
inx.com

[22] Ian Kuon, Jonathan Rose, Measuring the gap between FPGAs
and ASICs, Proceedings of the internation symposium on Field
programmable gate arrays table of contents Monterey, Califor-
nia, USA, 2006

[23] Castonguay, A., Savaria, Y, A Hypertransport Chip-to-Chip In-
terconnect Tunnel Developed Using SystemC. 16th Internation-
al Workshop on Rapid System Prototyping, Proceedings.
Shortening the Path From Specification to Prototype, p. 264-
266, 2005
52

	A Versatile, Low Latency HyperTransport Core
	1. Introduction
	2. Background
	3. Related work
	4. The HyperTransport core
	5. Results
	6. Verification
	7. Conclusion and Future Work
	8. Acknowledgements
	9. References

